We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different.
View Article and Find Full Text PDFExposure to di-(2-ethylhexyl) phthalate (DEHP) is prevalent based on the measurement of its hydrolytic metabolite mono-(2-ethylhexyl) phthalate (MEHP) in the urine of 78% of the general U.S. population studied in the 1999-2000 National Health and Nutrition Examination Survey (NHANES).
View Article and Find Full Text PDFMetabolism of most diesters of phthalic acid in humans occurs by an initial phase I biotransformation in which phthalate monoesters are formed, followed by a phase II biotransformation in which phthalate monoesters react with glucuronic acid to form their respective glucuronide conjugates. The phase II conjugation increases water solubility and facilitates urinary excretion of phthalate, and reduces the potential biological activity because the putative biologically active species is the monoester metabolite. In this study, we report percentages of glucuronidation of four common phthalate monoesters, monoethyl (mEP), monobutyl (mBP), monobenzyl (mBzP), and mono-2-ethylhexyl phthalate (mEHP) in a subset of urine (mEP n=262, mBP n=283, mBzP n=328, mEHP n=119) and serum (mEP n=93, mBP n=149, mEHP n=141) samples from the general US population.
View Article and Find Full Text PDFWe developed a highly sensitive method for the quantitative detection of nine phthalate ester metabolites in human serum. This method requires denaturation of the serum enzymes immediately after blood collection to avoid the hydrolysis of the contaminant diester parent compounds introduced during blood collection and storage. Before analysis, the samples were subjected to an enzymatic deconjugation to hydrolyze the glucuronidated phthalate monoesters and a solid-phase extraction to isolate the monoesters from other serum components.
View Article and Find Full Text PDFPhthalates are a group of industrial chemicals with many commercial uses, such as solvents, additives, and plasticizers. For example, di-(2-ethylhexyl) phthalate (DEHP) is added in varying amounts to certain plastics, such as polyvinyl chloride, to increase their flexibility. In humans, phthalates are metabolized to their respective monoesters, conjugated, and eliminated.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
June 2003
Phthalates are widely used as industrial solvents and plasticizers, with global use exceeding four million tons per year. We improved our previously developed high-performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometric (HPLC-APCI-MS/MS) method to measure urinary phthalate metabolites by increasing the selectivity and the sensitivity by better resolving them from the solvent front, adding three more phthalate metabolites, monomethyl phthalate (mMP), mono-(2-ethyl-5-oxohexyl)phthalate (mEOHP) and mono-(2-ethyl-5-hydroxyhexyl)phthalate (mEHHP); increasing the sample throughput; and reducing the solvent usage. Furthermore, this improved method enabled us to analyze free un-conjugated mono-2-ethylhexyl phthalate (mEHP) by eliminating interferences derived from coelution of the glucuronide-bound, or conjugated form, of the mEHP on measurements of the free mEHP.
View Article and Find Full Text PDF