There are multiple independent genetic signals at the () locus associated with type 2 diabetes risk, fasting glucose, ectopic fat, height, and bone mineral density. We have previously shown that loss of in pancreatic beta cells reduces insulin content and impairs islet cell development and function. However, RREB1 is a widely expressed transcription factor and the metabolic impact of RREB1 loss remains unknown.
View Article and Find Full Text PDFInducible pluripotent stem cell-derived human β-like cells (BLCs) hold promise for both therapy and disease modeling, but their generation remains challenging and their functional analyses beyond transcriptomic and morphological assessments remain limited. Here, we validate an approach using multicellular and single-cell electrophysiological tools to evaluate function of BLCs from pioneer protocols that can be easily adapted to more differentiated BLCs. The multi-electrode arrays (MEAs) measuring the extracellular electrical activity revealed that BLCs, like primary β-cells, are electrically coupled and produce slow potential (SP) signals that are closely linked to insulin secretion.
View Article and Find Full Text PDFiPSC-derived human β-like cells (BLC) hold promise for both therapy and disease modelling, but their generation remains challenging and their functional analyses beyond transcriptomic and morphological assessments remain limited. Here, we validate an approach using multicellular and single cell electrophysiological tools to evaluate BLCs functions. The Multi-Electrode Arrays (MEAs) measuring the extracellular electrical activity revealed that BLCs are electrically coupled, produce slow potential (SP) signals like primary β-cells that are closely linked to insulin secretion.
View Article and Find Full Text PDFThe coding variant (p.Arg192His) in the transcription factor PAX4 is associated with an altered risk for type 2 diabetes (T2D) in East Asian populations. In mice, Pax4 is essential for beta cell formation but its role on human beta cell development and/or function is unknown.
View Article and Find Full Text PDFAims/hypothesis: Genome-wide studies have uncovered multiple independent signals at the RREB1 locus associated with altered type 2 diabetes risk and related glycaemic traits. However, little is known about the function of the zinc finger transcription factor Ras-responsive element binding protein 1 (RREB1) in glucose homeostasis or how changes in its expression and/or function influence diabetes risk.
Methods: A zebrafish model lacking rreb1a and rreb1b was used to study the effect of RREB1 loss in vivo.
Transcriptional and functional cellular specialization has been described for insulin-secreting β-cells of the endocrine pancreas. However, it is not clear whether β-cell heterogeneity is stable or reflects dynamic cellular states. We investigated the temporal kinetics of endogenous insulin gene activity using live cell imaging, with complementary experiments using FACS and single-cell RNA sequencing, in β-cells from Ins2GFP knockin mice.
View Article and Find Full Text PDFLancet Diabetes Endocrinol
October 2021
Type 1 diabetes is characterised by autoimmune-mediated destruction of pancreatic β-cell mass. With the advent of insulin therapy a century ago, type 1 diabetes changed from a progressive, fatal disease to one that requires lifelong complex self-management. Replacing the lost β-cell mass through transplantation has proven successful, but limited donor supply and need for lifelong immunosuppression restricts widespread use.
View Article and Find Full Text PDFNat Rev Endocrinol
April 2020
Type 2 diabetes mellitus (T2DM) is an increasingly prevalent multifactorial disease that has both genetic and environmental risk factors, resulting in impaired glucose homeostasis. Genome-wide association studies (GWAS) have identified over 400 genetic signals that are associated with altered risk of T2DM. Human physiology and epigenomic data support a central role for the pancreatic islet in the pathogenesis of T2DM.
View Article and Find Full Text PDFA rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.
View Article and Find Full Text PDFAppropriate regulation of genes that coordinate pancreas progenitor proliferation and differentiation is required for pancreas development. Here, we explore the role of H3K4 methylation and the Trithorax group (TrxG) complexes in mediating gene expression during pancreas development. Disruption of TrxG complex assembly, but not catalytic activity, prevented endocrine cell differentiation in pancreas progenitor spheroids.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors.
View Article and Find Full Text PDFDuring pancreatic development, proliferating pancreatic progenitors activate the proendocrine transcription factor neurogenin 3 (NEUROG3), exit the cell cycle, and differentiate into islet cells. The mechanisms that direct robust NEUROG3 expression within a subset of progenitor cells control the size of the endocrine population. Here we demonstrate that NEUROG3 is phosphorylated within the nucleus on serine 183, which catalyzes its hyperphosphorylation and proteosomal degradation.
View Article and Find Full Text PDFAims/hypothesis: The sex-determining region Y (SRY)-related high mobility group (HMG) box (SOX) family of transcription factors is essential for normal organismal development. Despite the longstanding knowledge that many SOX family members are expressed during pancreas development, a role for many of these factors in the establishment of insulin-producing beta cell fate remains to be determined. The aim of this study is to elucidate the role of SOX4 during beta cell development.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) have great promise as a source of unlimited transplantable cells for regenerative medicine. However, current progress on producing the desired cell type for disease treatment has been limited due to an insufficient understanding of the developmental processes that govern their differentiation, as well as a paucity of tools to systematically study differentiation in the lab. In order to overcome these limitations, cell-type reporter hESC lines will be required.
View Article and Find Full Text PDFAlthough many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos.
View Article and Find Full Text PDFCellular homeostasis requires intrinsic sensing mechanisms to temper function in the face of prolonged activity. In the pancreatic β-cell, glucose is likely a physiological trigger that activates an adaptive response to stimulation, thereby maintaining cellular homeostasis. Immediate early genes (IEGs) are activated as a first line of defense in cellular homeostasis and are largely responsible for transmitting an environmental cue to a cellular response.
View Article and Find Full Text PDF