Enterobactin (ENT) is a tris-catechol siderophore used to acquire iron by multiple bacterial species. These ENT-dependent iron uptake systems have often been considered as potential gates in the bacterial envelope through which one can shuttle antibiotics (Trojan horse strategy). In practice, siderophore analogues containing catechol moieties have shown promise as vectors to which antibiotics may be attached.
View Article and Find Full Text PDFIron acquisition pathways have often been considered to be gateways for the uptake of antibiotics into bacteria. Bacteria excrete chelators, called siderophores, to access iron. Antibiotic molecules can be covalently attached to siderophores for their transport into pathogens during the iron-uptake process.
View Article and Find Full Text PDFPrevious studies have suggested that antibiotic vectorization by siderophores (iron chelators produced by bacteria) considerably increases the efficacy of such drugs. The siderophore serves as a vector: when the pathogen tries to take up iron via the siderophore, it also takes up the antibiotic. Catecholates are among the most common iron-chelating compounds used in synthetic siderophore-antibiotic conjugates.
View Article and Find Full Text PDFConversion of nitriles under mild conditions leads to a new class of primary amines, including room temperature ionic liquids, acting as efficient anticancer agents.
View Article and Find Full Text PDFA multicomponent reaction (MCR) based on a cyclohydrocarbonylation (CHC) driven by hydroformylation was set up toward the efficient diastereoselective preparation of oxazolopiperidines (4a-e) and -azepines (7a-d). The bicyclic oxazolidines were obtained from chiral N-alkenylamino alcohols via transient cyclic iminium intermediates that underwent an intramolecular cyclization from the appendant oxygen. On the basis of a series of different experimental conditions, the diastereocontrol observed during the formation of the oxazolidines is best explained by the stereoelectronic effect induced by an A(1,3)-strain in a common cyclic iminium intermediate (A).
View Article and Find Full Text PDFConvenient accesses to enantiomerically pure 2-, 2,3-, 2,6-, 2,3,6-substituted piperidines and 1,4-substituted indolizine are described. At first, indium-mediated aminoallylation and -crotylation of aldehydes with (R)-phenylglycinol or (1R,2S)-1-amino-2-indanol gave homoallylamines with high stereocontrol. Then, these products, submitted to a Rh(I)-catalyzed hydroformylative cyclohydrocarbonylation, afforded perhydrooxazolo[3,2-a]piridines whose oxazolidines are opened with nucleophiles.
View Article and Find Full Text PDF