Aims: Areas of gland crowding that do not fulfil diagnostic criteria of endometrioid intra-epithelial neoplasia (EIN) are often encountered in endometrial biopsies. In this study, we document the prevalence of neoplastic outcome in patients with these subdiagnostic lesions (SL) and assess the utility of morphological features and a three-marker immunohistochemistry panel (PAX2, PTEN, beta-catenin) to predict outcome.
Methods And Results: Of 430 women with SL on endometrial sampling at Brigham and Women's Hospital between 2001 and 2021 with available follow-up biopsy, 72 (17%) had a neoplastic outcome (EIN or endometrioid carcinoma).
A small subset of male germ cell tumors (GCT) demonstrates overgrowth of histologic components that resemble somatic malignancies (e.g., sarcoma, carcinoma).
View Article and Find Full Text PDFAims: Mismatch repair (MMR) deficiency is commonly caused by functional inactivation of MLH1, PMS2, MSH2 or MSH6. The morphological and molecular correlates of MMR deficiency have been extensively characterized in certain tumour types such as colorectal and endometrial adenocarcinoma. In contrast, the histological and molecular features of MMR-deficient prostate cancer remain incompletely described.
View Article and Find Full Text PDFFumarate hydratase (FH)-deficient renal cell carcinoma (RCC) is a rare and clinically aggressive RCC subtype that is commonly associated with the hereditary leiomyomatosis and renal cell carcinoma syndrome. The diagnostic hallmark of FH-deficient RCC is a high-grade microscopic appearance with prominent inclusion-like eosinophilic nucleoli and perinucleolar halos. Herein we report a case of an FH-deficient RCC in a 30-year-old female that exhibited low-grade nuclei and abundant eosinophilic cytoplasm, reminiscent of the clinically more indolent succinate dehydrogenase-deficient RCC subtype and the newly described eintity, eosinophilic, solid and cystic RCC.
View Article and Find Full Text PDFThe hereditary leiomyomatosis and renal cell carcinoma syndrome (HLRCC) is defined by germline mutations in the fumarate hydratase (FH) gene and associated with leiomyomas and aggressive renal cell carcinomas with FH deficiency. Here, we comprehensively characterize two new patients with HLRCC syndrome on a morphological, immunohistochemical and genetic level. The patients developed aggressive HLRCC syndrome-associated RCCs, uterine leiomyomas and dermal leiomyomas.
View Article and Find Full Text PDFThe 2016 WHO Classification of Tumors of the Urinary System recognizes microphthalmia transcription factor (MiT) family translocation carcinomas as a separate entity among renal cell carcinomas. TFE3 and transcription factor EB (TFEB) are members of the MiT family for which chromosomal rearrangements have been associated with renal cell carcinoma formation. TFEB translocation renal cell carcinoma is a rare tumor harboring a t(6;11)(p21;q12) translocation.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. This unit describes protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 endonuclease I assay.
View Article and Find Full Text PDFMonomeric clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated 9 (Cas9) nucleases have been widely adopted for simple and robust targeted genome editing but also have the potential to induce high-frequency off-target mutations. In principle, two orthogonal strategies for reducing off-target cleavage, truncated guide RNAs (tru-gRNAs) and dimerization-dependent RNA-guided FokI-dCas9 nucleases (RFNs), could be combined as tru-RFNs to further improve genome editing specificity. Here we identify a robust tru-RFN architecture that shows high activity in human cancer cell lines and embryonic stem cells.
View Article and Find Full Text PDFCRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide, off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called genome-wide, unbiased identification of DSBs enabled by sequencing (GUIDE-seq), relies on capture of double-stranded oligodeoxynucleotides into DSBs.
View Article and Find Full Text PDFMonomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers.
View Article and Find Full Text PDFPluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types.
View Article and Find Full Text PDF