Publications by authors named "Nicolas Wallaert"

To date, pure-tone audiometry remains the gold standard for clinical auditory testing. However, pure-tone audiometry is time-consuming and only provides a discrete estimate of hearing acuity. Here, we aim to address these two main drawbacks by developing a machine learning (ML)-based approach for fully automated bone-conduction (BC) audiometry tests with forehead vibrator placement.

View Article and Find Full Text PDF

Importance: Cochlear implants are an effective technique for enhancing speech perception abilities in quiet environments for people with severe to profound deafness. Nevertheless, complex sound signals perception, such as music perception, remains challenging for cochlear implant users.

Objective: To assess the benefit of a tonotopic map on music perception in new cochlear implant users.

View Article and Find Full Text PDF

Understanding speech in noise is particularly difficult for individuals occupationally exposed to noise due to a mix of noise-induced auditory lesions and the energetic masking of speech signals. For years, the monitoring of conventional audiometric thresholds has been the usual method to check and preserve auditory function. Recently, suprathreshold deficits, notably, difficulties in understanding speech in noise, has pointed out the need for new monitoring tools.

View Article and Find Full Text PDF

Spectrotemporal modulations (STM) are essential features of speech signals that make them intelligible. While their encoding has been widely investigated in neurophysiology, we still lack a full understanding of how STMs are processed at the behavioral level and how cochlear hearing loss impacts this processing. Here, we introduce a novel methodological framework based on psychophysical reverse correlation deployed in the modulation space to characterize the mechanisms underlying STM detection in noise.

View Article and Find Full Text PDF

The effect of the number of modulation cycles () on frequency-modulation (FM) detection thresholds (FMDTs) was measured with and without interfering amplitude modulation (AM) for hearing-impaired (HI) listeners, using a 500-Hz sinusoidal carrier and FM rates of 2 and 20 Hz. The data were compared with FMDTs for normal-hearing (NH) listeners and AM detection thresholds (AMDTs) for NH and HI listeners [Wallaert, Moore, and Lorenzi (2016). J.

View Article and Find Full Text PDF

Amplitude-modulation detection thresholds (AMDTs) were measured at 40 dB sensation level for listeners with mild-to-moderate sensorineural hearing loss (age: 50-64 yr) for a carrier frequency of 500 Hz and rates of 2 and 20 Hz. The number of modulation cycles, N, varied between two and nine. The data were compared with AMDTs measured for young and older normal-hearing listeners [Wallaert, Moore, and Lorenzi (2016).

View Article and Find Full Text PDF

Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured for a 500-Hz carrier frequency and a 5-Hz modulation rate. For AM detection, FM at the same rate as the AM was superimposed with varying FM depth. For FM detection, AM at the same rate was superimposed with varying AM depth.

View Article and Find Full Text PDF

Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured at 40 dB sensation level for young (22-28 yrs) and older (44-66 yrs) listeners with normal audiograms for a carrier frequency of 500 Hz and modulation rates of 2 and 20 Hz. The number of modulation cycles, N, varied between 2 and 9. For FM detection, uninformative AM at the same rate as the FM was superimposed to disrupt excitation-pattern cues.

View Article and Find Full Text PDF

Recent studies suggest that normal-hearing listeners maintain robust speech intelligibility despite severe degradations of amplitude-modulation (AM) cues, by using temporal-envelope information recovered from broadband frequency-modulation (FM) speech cues at the output of cochlear filters. This study aimed to assess whether cochlear damage affects this capacity to reconstruct temporal-envelope information from FM. This was achieved by measuring the ability of 40 normal-hearing listeners and 41 listeners with mild-to-moderate hearing loss to identify syllables processed to degrade AM cues while leaving FM cues intact within three broad frequency bands spanning the range 65-3,645 Hz.

View Article and Find Full Text PDF