Tauopathies are neurodegenerative disorders involving the accumulation of tau isoforms in cell subpopulations such as astrocytes. The origins of the 3R and 4R isoforms of tau that accumulate in astrocytes remain unclear. Extracellular vesicles (EVs) were isolated from primary neurons overexpressing 1N3R or 1N4R tau or from human brain extracts (progressive supranuclear palsy or Pick disease patients or controls) and characterized (electron microscopy, nanoparticle tracking analysis (NTA), proteomics).
View Article and Find Full Text PDFTauopathies are neurodegenerative diseases characterized by tau inclusions in brain cells. Seed-competent tau species have been suggested to spread from cell to cell in a stereotypical manner, indicating that this may involve a prion-like mechanism. Although the intercellular mechanisms of transfer are unclear, extracellular vesicles (EVs) could be potential shuttles.
View Article and Find Full Text PDFDespite decades of successful treatment of therapy-resistant depression and major scientific advances in the field, our knowledge about electro-convulsive therapy's (ECT) mechanisms of action is still scarce. Building on strong empirical evidence for ECT-induced hippocampus anatomy changes, we sought to test the hypothesis that ECT has a differential impact along the hippocampus longitudinal axis. We acquired behavioural and brain anatomy magnetic resonance imaging (MRI) data in patients with depressive episode undergoing ECT (n = 9) or pharmacotherapy (n = 24) and healthy controls (n = 30) at two time points 3 months apart.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD.
View Article and Find Full Text PDFAstrocytes serve important roles that affect recruitment and function of neurons at the local and network levels. Here we review the contributions of astrocyte signaling to synaptic plasticity, neuronal network oscillations, and memory function. The roles played by astrocytes are not fully understood, but astrocytes seem to contribute to memory consolidation and seem to mediate the effects of vigilance and arousal on memory performance.
View Article and Find Full Text PDFFront Cell Neurosci
November 2018
Renewed discussion about whether or not adult neurogenesis exists in the human hippocampus, and the nature and strength of the supporting evidence, has been reignited by two prominently published reports with opposite conclusions. Here, we summarize the state of the field and argue that there is currently no reason to abandon the idea that adult-generated neurons make important functional contributions to neural plasticity and cognition across the human lifespan.
View Article and Find Full Text PDFIn adult neurogenesis young neurons connect to the existing network via formation of thousands of new synapses. At early developmental stages, glutamatergic synapses are sparse, immature and functionally 'silent', expressing mainly NMDA receptors. Here we show in 2- to 3-week-old young neurons of adult mice, that brief-burst activity in glutamatergic fibers is sufficient to induce postsynaptic AP firing in the absence of AMPA receptors.
View Article and Find Full Text PDFPost-natal hippocampal neurogenesis plays a role in hippocampal function, and neurons born post-natally participate to spatial memory and mood control. However, a great proportion of granule neurons generated in the post-natal hippocampus are eliminated during the first 3 weeks of their maturation, a mechanism that depends on their synaptic integration. In a recent study, we examined the possibility of enhancing the synaptic integration of neurons born post-natally, by specifically overexpressing synaptic cell adhesion molecules in these cells.
View Article and Find Full Text PDFPrecise regulation of cellular metabolism is hypothesized to constitute a vital component of the developmental sequence underlying the life-long generation of hippocampal neurons from quiescent neural stem cells (NSCs). The identity of stage-specific metabolic programs and their impact on adult neurogenesis are largely unknown. We show that the adult hippocampal neurogenic lineage is critically dependent on the mitochondrial electron transport chain and oxidative phosphorylation machinery at the stage of the fast proliferating intermediate progenitor cell.
View Article and Find Full Text PDFDentate granule cells are born throughout life in the mammalian hippocampus. The integration of newborn neurons into the dentate circuit is activity-dependent, and structural data characterizing synapse formation suggested that the survival of adult-born granule cells is regulated by competition for synaptic partners. Here we tested this hypothesis by using a mouse model with genetically enhanced plasticity of mature granule cells through temporally controlled expression of a nuclear inhibitor of protein phosphatase (NIPP*).
View Article and Find Full Text PDFNeurexins are transmembrane synaptic cell adhesion molecules involved in the development and maturation of neuronal synapses. In the present study, we report that Nrxn3β is processed by the metalloproteases ADAM10, ADAM17, and by the intramembrane-cleaving protease γ-secretase, producing secreted neurexin3β (sNrxn3β) and a single intracellular domain (Nrxn3β-ICD). We further completed the full characterization of the sites at which Nrxn3β is processed by these proteases.
View Article and Find Full Text PDFAdult hippocampal neurogenesis relies on the activation of neural stem cells in the dentate gyrus, their division, and differentiation of their progeny into mature granule neurons. The complex morphology of radial glia-like (RGL) stem cells suggests that these cells establish numerous contacts with the cellular components of the neurogenic niche that may play a crucial role in the regulation of RGL stem cell activity. However, the morphology of RGL stem cells remains poorly described.
View Article and Find Full Text PDFNewly generated young neurons in the adult hippocampus receive GABAergic synaptic inputs, which are crucial for activity-dependent survival and functional maturation between 1-3 weeks after mitosis. We found synaptically driven action potential (AP) firing in these newborn young cells in adult mice. Although glutamatergic synaptic inputs remained subthreshold, activation of GABAergic synaptic inputs depolarized young neurons and reliably evoked APs.
View Article and Find Full Text PDFAdult neurogenesis is tightly regulated by the neurogenic niche. Cellular contacts between niche cells and neural stem cells are hypothesized to regulate stem cell proliferation or lineage choice. However, the structure of adult neural stem cells and the contact they form with niche cells are poorly described.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
December 2015
The adult hippocampus generates functional dentate granule cells (GCs) that release glutamate onto target cells in the hilus and cornus ammonis (CA)3 region, and receive glutamatergic and γ-aminobutyric acid (GABA)ergic inputs that tightly control their spiking activity. The slow and sequential development of their excitatory and inhibitory inputs makes them particularly relevant for information processing. Although they are still immature, new neurons are recruited by afferent activity and display increased excitability, enhanced activity-dependent plasticity of their input and output connections, and a high rate of synaptogenesis.
View Article and Find Full Text PDFNMDA receptor (NMDAR)-dependent forms of synaptic plasticity are thought to underlie the assembly of developing neuronal circuits and to play a crucial role in learning and memory. It remains unclear how NMDAR might contribute to the wiring of adult-born granule cells (GCs). Here we demonstrate that nascent GCs lacking NMDARs but rescued from apoptosis by overexpressing the pro-survival protein Bcl2 were deficient in spine formation.
View Article and Find Full Text PDF