Publications by authors named "Nicolas Tiercelin"

Spintronic terahertz emitters (STEs), based on optical excitation of nanometer thick ferromagnetic/heavy metal (FM/HM) heterojunctions, have become important sources for the generation of terahertz (THz) pulses. However, the efficiency of the optical-to-THz conversion remains limited. Although optical techniques have been developed to enhance the optical absorption, no investigations have studied the application of THz cavities.

View Article and Find Full Text PDF
Article Synopsis
  • Spintronic terahertz emitters (STEs) are powerful terahertz sources that can operate across a wide range of pumping frequencies, yet their performance is ultimately limited by their optical damage threshold.
  • Recent advancements in technology require STEs to pump at higher megahertz rates rather than the traditional kilohertz rates, highlighting a gap in research on this topic.
  • The study introduces a new classification of the optical damage threshold based on repetition rates and identifies temperature-driven inter-layer diffusion as the main failure cause, offering insights for improving STE performance in future applications.
View Article and Find Full Text PDF

Spintronic terahertz emitters promise terahertz sources with an unmatched broad frequency bandwidth that are easy to fabricate and operate, and therefore easy to scale at low cost. However, current experiments and proofs of concept rely on free-space ultrafast pump lasers and rather complex benchtop setups. This contrasts with the requirements of widespread industrial applications, where robust, compact, and safe designs are needed.

View Article and Find Full Text PDF

In this article, we investigate optically induced terahertz radiation in ferromagnetic FeCo layers of varying thickness on Si and SiO substrates. Efforts have been made to account for the influence of the substrate on the parameters of the THz radiation generated by the ferromagnetic FeCo film. The study reveals that the thickness of the ferromagnetic layer and the material of the substrate significantly affect the generation efficiency and spectral characteristics of the THz radiation.

View Article and Find Full Text PDF

We report an increase in terahertz (THz) radiation efficiency due to FeCo/WSe structures in the reflection geometry. This can be attributed to an absorption increase in the alloy FeCo layer at the input FeCo/WSe interface due to constructive interference, as well as to the backward transport of hot carriers from FeCo to WSe. In contrast to the transmission geometry, the THz generation efficiency in the reflection is much less dependent on the magnetic layer thickness.

View Article and Find Full Text PDF

Polarization of electromagnetic waves plays an extremely important role in interaction of radiation with matter. In particular, interaction of polarized waves with ordered matter strongly depends on orientation and symmetry of vibrations of chemical bonds in crystals. In quantum technologies, the polarization of photons is considered as a "degree of freedom", which is one of the main parameters that ensure efficient quantum computing.

View Article and Find Full Text PDF

Intermetallic heterostructures of rare-earth and transition metals exhibit physical properties prospective for various applications. These structures combine giant magnetostriction, controllable magnetic anisotropy, magneto-optical activity and allow spin reorientation transitions (SRT) induced by magnetic field at room temperature. Here, we present the results of a study of spin dynamics induced by ultrafast optical excitation in the [Formula: see text] heterostructure.

View Article and Find Full Text PDF

The magnetic moment dynamics excited by 35 fs laser pulses in TbCo/FeCo heterostructure is experimentally investigated by pump-probe technique. The studies are carried out in two typical geometries with magnetizing field perpendicular and along to the easy magnetization axis. In the 'easy axis' orientation, high-frequency oscillations of magnetic moments odd with respect to the sign of the magnetizing field are observed using the magneto-optical Kerr effect.

View Article and Find Full Text PDF

Magnetoplasmonics, combining magnetic and plasmonic functions, has attracted increasing attention owing to its unique magnetic and optical properties in various nano-architectures. In this work, Ag, CoFeB and ITO layers are fabricated on anodic aluminum oxide (AAO) porous films to form hybrid multi-layered nanoporous thin films by magnetron sputtering deposition process. The designed nanostructure supports localized surface plasmon resonance (LSPR) and tunable magneto-optical (MO) activity, namely, the sign inversion, which can be controlled by AAO porous film geometry (pore diameter and inter-pore spacing) flexibly.

View Article and Find Full Text PDF

The (Ba,Sr)FeO(3-δ) system is known for its strong tendency for oxygen and vacancies to order into several forms including fully ordered pseudobrownmillerites, hexagonal perovskites with segregation of the vacancies in particular anionic layers and low deficient (pseudo)cubic compounds (generally δ < 0.27, Fe(3/4+)). We show for the first time, using a simple chemical process, the easy access to a large amount of vacancies (δ ≈ 0.

View Article and Find Full Text PDF

The diversification of antiferromagnetic (AFM) oxides with high Néel temperature is of fundamental as well as technical interest if one considers the need for robust AFM in the field of spin-tronics (exchange bias, multiferroics, etc.). Within the broad series of so-called hexagonal perovskites (HP), the existence of face-sharing octahedral units drastically lowers the strength of magnetic exchanges as compared to corner-sharing octahedral edifices.

View Article and Find Full Text PDF