Multiple myeloma (MM) is a monoclonal gammopathy characterized by biological heterogeneity and unregulated proliferation of plasma cells (PCs) in bone marrow (BM). MM is a multistep process based on genomic instability, epigenetic dysregulation and a tight cross-talk with the BM microenvironment that plays a pivotal role supporting the proliferation, survival, drug-resistance and homing of PCs. The BM microenvironment consists of a hematopoietic and a non-hematopoietic compartment, which cooperate to create a tumor environment.
View Article and Find Full Text PDFKetogenesis takes place in hepatocyte mitochondria where acetyl-CoA derived from fatty acid catabolism is converted to ketone bodies (KB), namely β-hydroxybutyrate (β-OHB), acetoacetate and acetone. KB represent important alternative energy sources under metabolic stress conditions. Ketogenic diets (KDs) are low-carbohydrate, fat-rich eating strategies which have been widely proposed as valid nutritional interventions in several metabolic disorders due to its substantial efficacy in weight loss achievement.
View Article and Find Full Text PDFOncoimmunology
September 2022
The humoral and cellular response to SARS-CoV-2 mRNA full vaccination and booster dose as well as the impact of the spike variants, including Omicron, are still unclear in patients with multiple myeloma (MM) and those with pre-malignant monoclonal gammopathies. In this study, involving 40 patients, we found that MM patients with relapsed-refractory disease (MMR) had reduced spike-specific antibody levels and neutralizing titers after SARS-CoV-2 vaccination. The five analyzed variants, remarkably Omicron, had a significant negative impact on the neutralizing ability of the vaccine-induced antibodies in all patients with MM and smoldering MM.
View Article and Find Full Text PDFMultiple myeloma (MM) is a blood cancer that derives from plasma cells (PCs), which will accumulate in the bone marrow (BM). Over time, several drugs have been developed to treat this disease that is still uncurable. The therapies used to treat the disease target immune activity, inhibit proteasome activity, and involve the use of monoclonal antibodies.
View Article and Find Full Text PDFIntroduction: The inflammatory potential of SARS-CoV-2 Spike S1 (Spike) has never been tested in human primary macrophages (MΦ). Different recombinant Spikes might display different effects in vitro, according to protein length and glycosylation, and endotoxin (lipopolysaccharide, LPS) contamination.
Objectives: To assess (1) the effects of different Spikes on human primary MΦ inflammation; (2) whether LPS contamination of recombinant Spike is (con)cause in vitro of increased MΦ inflammation.