Proc Natl Acad Sci U S A
March 2019
Diabetic macular edema is a major complication of diabetes resulting in loss of central vision. Although heightened vessel leakiness has been linked to glial and neuronal-derived factors, relatively little is known on the mechanisms by which mature endothelial cells exit from a quiescent state and compromise barrier function. Here we report that endothelial NOTCH1 signaling in mature diabetic retinas contributes to increased vascular permeability.
View Article and Find Full Text PDFSporadic Alzheimer's disease (AD) is the most common cause of dementia. However, representative experimental models of AD have remained difficult to produce because of the disease's uncertain origin. The Polycomb group protein BMI1 regulates chromatin compaction and gene silencing.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a leading cause of blindness worldwide affecting individuals over the age of 50. The neovascular form (NV AMD) is characterized by choroidal neovascularization (CNV) and responsible for the majority of central vision impairment. Using non-biased microRNA arrays and individual TaqMan qPCRs, we profiled miRNAs in the vitreous humour and plasma of patients with NV AMD.
View Article and Find Full Text PDFHerein, we present the precise stoichiometric control of methlyammonium lead iodide perovskite thin-films using high vacuum dual-source vapor-phase deposition. We found that UV/Vis absorption and emission spectra were inadequate for assessing precisely the perovskite composition. Alternatively, inductively coupled plasma mass spectrometry (ICP-MS) is used to give precise, reproducible, quantitative measurements of the I/Pb ratio without systematic errors that often result from varying device thicknesses and morphologies.
View Article and Find Full Text PDFStudy Objective: To evaluate the pharmacokinetic and pharmacodynamic profiles of piperacillin-tazobactam administered as a 4-hour infusion in critically ill patients undergoing continuous renal replacement therapy (CRRT).
Design: Prospective, observational, pharmacokinetic study.
Setting: Intensive care unit of a tertiary care hospital in Montréal, Canada.
Amphiphilic sensitizers are central to the function of dye-sensitized solar cells. It is known that the cell's performance depends on the molecular arrangement and the density of the dye on the semiconductor surface, but a molecular-level picture of the cell-electrolyte interface is still lacking. Here, we present subnanometer in situ atomic force microscopy images of the Z907 dye at the surface of TiO2 in a relevant liquid.
View Article and Find Full Text PDFRecently, hybrid organic-inorganic metal halide perovskites have gained prominence as potent light harvesters in thin film solid-state photovoltaics. In particular the solar-to-electric power conversion efficiency (PCE) of devices using CH(3)NH(3)PbI(3) as sensitizer has increased from 3 to 20.1% within only a few years.
View Article and Find Full Text PDFOrgano-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement.
View Article and Find Full Text PDFMesoscopic solid-state solar cells based on the inorganic-organic hybrid perovskite CH3NH3PbI3 in conjunction with the amorphous organic semiconductor spiro-MeOTAD as a hole transport material (HTM) are investigated using impedance spectroscopy (IS). A model to interpret the frequency response of these devices is established by expanding and elaborating on the existing models used for the liquid and solid-state dye-sensitized solar cells. Furthermore, the influence of changing the additive concentrations of tert-butylpyridine and LiTFSI in the HTM and varying the HTM overlayer thickness on top of the sub-micrometer thick TiO2 on the extracted IS parameters is investigated.
View Article and Find Full Text PDFWe report the use of Y(3+)-substituted TiO2 (0.5%Y-TiO₂) in solid-state mesoscopic solar cells, consisting of CH₃NH₃PbI₃ as the light harvester and spiro-OMeTAD as the hole transport material. A power conversion efficiency of 11.
View Article and Find Full Text PDFThe deterioration of the inner blood-retinal barrier and consequent macular edema is a cardinal manifestation of diabetic retinopathy (DR) and the clinical feature most closely associated with loss of sight. We provide evidence from both human and animal studies for the critical role of the classical neuronal guidance cue, semaphorin 3A, in instigating pathological vascular permeability in diabetic retinas via its cognate receptor neuropilin-1. We reveal that semaphorin 3A is induced in early hyperglycemic phases of diabetes within the neuronal retina and precipitates initial breakdown of endothelial barrier function.
View Article and Find Full Text PDFSee-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a prominent cause of blindness in the Western world. To date, its molecular pathogenesis as well as the sequence of events leading to retinal degeneration remain largely ill-defined. While the invasion of choroidal neovessels in the retina is the primary mechanism that precipitates loss of sight, an earlier dry form precedes it.
View Article and Find Full Text PDFIn stroke and proliferative retinopathy, despite hypoxia driven angiogenesis, delayed revascularization of ischemic tissue aggravates the loss of neuronal function. What hinders vascular regrowth in the ischemic central nervous system remains largely unknown. Using the ischemic retina as a model of neurovascular interaction in the CNS, we provide evidence that the failure of reparative angiogenesis is temporally and spatially associated with endoplasmic reticulum (ER) stress.
View Article and Find Full Text PDFHerein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator.
View Article and Find Full Text PDFDye adsorption plays a crucial role in dye-sensitized solar cells. Herein, we demonstrate an in situ liquid-phase analytical technique to quantify in real time adsorption of dye and coadsorbates on flat and mesoporous TiO(2) films. For the first time, a molar ratio of co-adsorbed Y123 and chenodeoxycholic acid has been measured.
View Article and Find Full Text PDFHematite photoanodes for photoelectrochemical (PEC) water splitting are often fabricated as extremely-thin films to minimize charge recombination because of the short diffusion lengths of photoexcited carriers. However, poor crystallinity caused by structural interaction with a substrate negates the potential of ultrathin hematite photoanodes. This study demonstrates that ultrathin Ga2O3 underlayers, which were deposited on conducting substrates prior to hematite layers by atomic layer deposition, served as an isomorphic (corundum-type) structural template for ultrathin hematite and improved the photocurrent onset of PEC water splitting by 0.
View Article and Find Full Text PDFHerein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO(2), or TiO(2) host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs.
View Article and Find Full Text PDFHerein, we present a novel morphology for solid-state dye-sensitized solar cells based on the simple and straightforward self-assembly of nanorods into a 3D fibrous network of fused single-crystalline anatase nanowires. This architecture offers a high roughness factor, significant light scattering, and up to several orders of magnitude faster electron transport to reach a near-record-breaking conversion efficiency of 4.9%.
View Article and Find Full Text PDFWe present a material assembly route for the manufacture of dye-sensitized solar cells, coupling a high-surface mesoporous layer to a three-dimensional photonic crystal (PC). Material synthesis aided by self-assembly on two length scales provided electrical and pore connectivity at the mesoporous and the microporous level. This construct allows effective dye sensitization, electrolyte infiltration, and charge collection from both the mesoporous and the PC layers, opening up additional parameter space for effective light management by harvesting PC-induced resonances.
View Article and Find Full Text PDFIn mammals, a limited set of homeobox-containing transcription factors are expressed in the presumptive eye field and required to initiate eye development. How these factors interact together at the genetic and molecular level to coordinate this developmental process is poorly understood. We found that the Lhx2 and Pax6 transcription factors operate in a concerted manner during retinal development to promote transcriptional activation of the Six6 homeobox-gene in primitive and mature retinal progenitors.
View Article and Find Full Text PDFIn vertebrates, a limited number of homeobox-containing transcription factors are expressed in the optic vesicle primordium and are required and sufficient for eye formation. At present, little is known about the distinct functions of these factors in optic vesicle growth and on the nature of the main neuroepithelial (NE) progenitor population present in this organ. We have characterized a multipotent cell population present in the mouse optic vesicle that shows extensive proliferation potential and which expresses NE progenitor and retinal markers in vitro.
View Article and Find Full Text PDFThe transcription factor Pax6 regulates multiple aspects of central nervous system (CNS) development. At the cellular level, the Pax6 mutation was reported to affect homophilic and heterophilic cellular adhesion, neuron polarity and neurite outgrowth. These abnormalities were observed in multiple regions of Pax6-mutant CNS, suggesting a common function for Pax6 in regulating cytoskeletal dynamics.
View Article and Find Full Text PDFIn this communication we study the influence of strong 3D confinement on the self-assembly of diblock copolymers containing a polyferrocenylsilane metallopolymer segment. Both silica colloidal crystals and silica inverse colloidal crystals, having nanometer-scale interconnected pore networks, are used as molds to direct the self-assembly. Unusual morphologies, such as concentric shells and branched lamellae, result from the interaction of the polymer with the high surface area topologically periodic templates.
View Article and Find Full Text PDF