Precision medicine in immune-mediated inflammatory diseases (IMIDs) requires a cellular understanding of treatment response. We describe a therapeutic atlas for Crohn's disease (CD) and ulcerative colitis (UC) following adalimumab, an anti-tumour necrosis factor (anti-TNF) treatment. We generated ~1 million single-cell transcriptomes, organised into 109 cell states, from 216 gut biopsies (41 subjects), revealing disease-specific differences.
View Article and Find Full Text PDFApproximately 30% of early-stage lung adenocarcinoma patients present with disease progression after successful surgical resection. Despite efforts of mapping the genetic landscape, there has been limited success in discovering predictive biomarkers of disease outcomes. Here we performed a systematic multi-omic assessment of 143 tumors and matched tumor-adjacent, histologically-normal lung tissue with long-term patient follow-up.
View Article and Find Full Text PDFTumor mutations can influence the surrounding microenvironment leading to suppression of anti-tumor immune responses and thereby contributing to tumor progression and failure of cancer therapies. Here we use genetically engineered lung cancer mouse models and patient samples to dissect how mutations accelerate tumor growth by reshaping the immune microenvironment. Comprehensive immune profiling of -mutant vs wildtype tumors revealed dramatic changes in myeloid cells, specifically enrichment of Arg1 interstitial macrophages and SiglecF neutrophils.
View Article and Find Full Text PDFBackground And Aims: Fibrolamellar carcinoma (FLC) is a rare, difficult-to-treat liver cancer primarily affecting pediatric and adolescent patients, and for which precision medicine approaches have historically not been possible. The gene fusion was identified as a driver of FLC pathogenesis. We aimed to assess whether FLC tumors maintain dependency on this gene fusion and determine if PRKACA is a viable therapeutic target.
View Article and Find Full Text PDFA significant proportion of colorectal cancer (CRC) patients develop peritoneal metastases (PM) in the course of their disease. PMs are associated with a poor quality of life, significant morbidity and dismal disease outcome. To improve care for this patient group, a better understanding of the molecular characteristics of CRC-PM is required.
View Article and Find Full Text PDFBackground: Accurate fusion transcript detection is essential for comprehensive characterization of cancer transcriptomes. Over the last decade, multiple bioinformatic tools have been developed to predict fusions from RNA-seq, based on either read mapping or de novo fusion transcript assembly.
Results: We benchmark 23 different methods including applications we develop, STAR-Fusion and TrinityFusion, leveraging both simulated and real RNA-seq.
Outcomes for patients with advanced hepatocellular carcinoma (HCC) remain poor despite recent progress in drug development. Emerging data implicate FGF19 as a potential HCC driver, suggesting its receptor, FGFR4, as a novel therapeutic target. We evaluated fisogatinib (BLU-554), a highly potent and selective oral FGFR4 inhibitor, in a phase I dose-escalation/dose-expansion study in advanced HCC using FGF19 expression measured by IHC as a biomarker for pathway activation.
View Article and Find Full Text PDFLarge panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers.
View Article and Find Full Text PDFBackground: Muscle-invasive bladder cancer (MIBC) is an aggressive neoplasm with poor prognosis, lacking effective therapeutic targets. Oncogenic dependency on members of the TAM tyrosine kinase receptor family (TYRO3, AXL, MERTK) has been reported in several cancer types, but their role in bladder cancer has never been explored.
Methods: TAM receptor expression was evaluated in two series of human bladder tumours by gene expression (TCGA and CIT series), immunohistochemistry and western blotting analyses (CIT series).
Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas, of a set of predominantly intrahepatic CCA cases, and propose a molecular classification scheme. We identified an -mutant enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number.
View Article and Find Full Text PDFCholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number.
View Article and Find Full Text PDFImportance: Randomized clinical trials demonstrate no benefit for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in unselected patients with head and neck squamous cell carcinoma (HNSCC). However, a patient with stage IVA HNSCC received 13 days of neoadjuvant erlotinib and experienced a near-complete histologic response.
Objective: To determine a mechanism of exceptional response to erlotinib therapy in HNSCC.
Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors.
View Article and Find Full Text PDFMalignant mixed Müllerian tumours, also known as carcinosarcomas, are rare tumours of gynaecological origin. Here we perform whole-exome analyses of 22 tumours using massively parallel sequencing to determine the mutational landscape of this tumour type. On average, we identify 43 mutations per tumour, excluding four cases with a mutator phenotype that harboured inactivating mutations in mismatch repair genes.
View Article and Find Full Text PDFHuman cancer genomes harbour a variety of alterations leading to the deregulation of key pathways in tumour cells. The genomic characterization of tumours has uncovered numerous genes recurrently mutated, deleted or amplified, but gene fusions have not been characterized as extensively. Here we develop heuristics for reliably detecting gene fusion events in RNA-seq data and apply them to nearly 7,000 samples from The Cancer Genome Atlas.
View Article and Find Full Text PDFMembers of the ETS transcription factor family have been implicated in several cancers, where they are often dysregulated by genomic derangement. ETS variant 1 (ETV1) is an ETS factor gene that undergoes chromosomal translocation in prostate cancers and Ewing sarcomas, amplification in melanomas, and lineage dysregulation in gastrointestinal stromal tumors. Pharmacologic perturbation of ETV1 would be appealing in these cancers; however, oncogenic transcription factors are often deemed "undruggable" by conventional methods.
View Article and Find Full Text PDFUsing a genome-scale, lentivirally delivered shRNA library, we performed massively parallel pooled shRNA screens in 216 cancer cell lines to identify genes that are required for cell proliferation and/or viability. Cell line dependencies on 11,000 genes were interrogated by 5 shRNAs per gene. The proliferation effect of each shRNA in each cell line was assessed by transducing a population of 11M cells with one shRNA-virus per cell and determining the relative enrichment or depletion of each of the 54,000 shRNAs after 16 population doublings using Next Generation Sequencing.
View Article and Find Full Text PDFThe high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.
View Article and Find Full Text PDFMajor international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds.
View Article and Find Full Text PDFGenome-scale RNAi libraries enable the systematic interrogation of gene function. However, the interpretation of RNAi screens is complicated by the observation that RNAi reagents designed to suppress the mRNA transcripts of the same gene often produce a spectrum of phenotypic outcomes due to differential on-target gene suppression or perturbation of off-target transcripts. Here we present a computational method, Analytic Technique for Assessment of RNAi by Similarity (ATARiS), that takes advantage of patterns in RNAi data across multiple samples in order to enrich for RNAi reagents whose phenotypic effects relate to suppression of their intended targets.
View Article and Find Full Text PDFDespite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations.
View Article and Find Full Text PDFBreast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy.
View Article and Find Full Text PDFMelanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb).
View Article and Find Full Text PDF