Publications by authors named "Nicolas Stenger"

Moiré superlattices in van der Waals heterostructures represent a highly tunable quantum system, attracting substantial interest in both many-body physics and device applications. However, the influence of the moiré potential on light-matter interactions at room temperature has remained largely unexplored. In our study, we demonstrate that the moiré potential in MoS/WSe heterobilayers facilitates the localization of interlayer exciton (IX) at room temperature.

View Article and Find Full Text PDF

The two-dimensional material hexagonal boron nitride (hBN) hosts luminescent centres with emission energies of ∼2 eV which exhibit pronounced phonon sidebands. We investigate the microscopic origin of these luminescent centres by combining calculations with non-perturbative open quantum system theory to study the emission and absorption properties of 26 defect transitions. Comparing the calculated line shapes with experiments we narrow down the microscopic origin to three carbon-based defects: CC, CC, and VC.

View Article and Find Full Text PDF

Nanotechnology enables in principle a precise mapping from design to device but relied so far on human intuition and simple optimizations. In nanophotonics, a central question is how to make devices in which the light-matter interaction strength is limited only by materials and nanofabrication. Here, we integrate measured fabrication constraints into topology optimization, aiming for the strongest possible light-matter interaction in a compact silicon membrane, demonstrating an unprecedented photonic nanocavity with a mode volume of V ~ 3 × 10 λ, quality factor Q ~ 1100, and footprint 4 λ for telecom photons with a λ ~ 1550 nm wavelength.

View Article and Find Full Text PDF

Near-field microscopy allows for visualization of both the amplitude and phase of surface plasmon polaritons (SPPs). However, their quantitative characterization in a reflection configuration is challenging due to complex wave patterns arising from the interference between several excitation channels. Here, we present near-field measurements of SPPs on large monocrystalline gold platelets in the visible.

View Article and Find Full Text PDF

CuBaSnS (CBTS) and CuSrSnS (CSTS) semiconductors have been recently proposed as potential wide band gap photovoltaic absorbers. Although several measurements indicate that they are less affected by band tailing than their parent compound CuZnSnS, their photovoltaic efficiencies are still low. To identify possible issues, we characterize CBTS and CSTS in parallel by a variety of spectroscopic methods complemented by first-principles calculations.

View Article and Find Full Text PDF

Rooted in quantum optics and benefiting from its well-established foundations, strong coupling in nanophotonics has experienced increasing popularity in recent years. With nanophotonics being an experiment-driven field, the absence of appropriate theoretical methods to describe ground-breaking advances has often emerged as an important issue. To address this problem, the temptation to directly transfer and extend concepts already available from quantum optics is strong, even if a rigorous justification is not always available.

View Article and Find Full Text PDF

Dark plasmonic modes have interesting properties, including longer lifetimes and narrower linewidths than their radiative counterpart, and little to no radiative losses. However, they have not been extensively studied yet due to their optical inaccessibility. In this work, we systematically investigated the dark radial breathing modes (RBMs) in monocrystalline gold nanodisks, specifically their outcoupling behavior into the far-field by cathodoluminescence spectroscopy.

View Article and Find Full Text PDF

Only a few of the vast range of potential two-dimensional materials (2D) have been isolated or synthesised to date. Typically, 2D materials are discovered by mechanically exfoliating naturally occurring bulk crystals to produce atomically thin layers, after which a material-specific vapour synthesis method must be developed to grow interesting candidates in a scalable manner. Here we show a general approach for synthesising thin layers of two-dimensional binary compounds.

View Article and Find Full Text PDF

Controlling and confining light by exciting plasmons in resonant metallic nanostructures is an essential aspect of many new emerging optical technologies. Here we explore the possibility of controllably reconfiguring the intrinsic optical properties of semi-continuous gold films, by inducing permanent morphological changes with a femtosecond (fs)-pulsed laser above a critical power. Optical transmission spectroscopy measurements show a correlation between the spectra of the morphologically modified films and the wavelength, polarization, and the intensity of the laser used for alteration.

View Article and Find Full Text PDF

Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images exhibit a strong increase in the level of TPL signals for films thicknesses 3-8-nm, near the percolation threshold.

View Article and Find Full Text PDF

Electron energy-loss spectroscopy can be used for detailed spatial and spectral characterization of optical excitations in metal nanoparticles. In previous electron energy-loss experiments on silver nanoparticles with radii smaller than 20 nm, only the dipolar surface plasmon resonance was assumed to play a role. Here, applying electron energy-loss spectroscopy to individual silver nanoparticles encapsulated in silicon nitride, we observe besides the usual dipole resonance an additional surface plasmon resonance corresponding to higher angular momenta for nanoparticle radii as small as 4 nm.

View Article and Find Full Text PDF

High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5 nm.

View Article and Find Full Text PDF

We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.

View Article and Find Full Text PDF

Dip-in direct-laser-writing (DLW) optical lithography allows fabricating complex three-dimensional microstructures without the height restrictions of regular DLW. Bow-tie elements assembled into mechanical metamaterials with positive/zero/negative Poisson's ratio and with sufficient overall size for direct mechanical characterization aim at demonstrating the new possibilities with respect to rationally designed effective materials.

View Article and Find Full Text PDF

Following a theoretical proposal [M. Farhat et al., Phys.

View Article and Find Full Text PDF

In a recent publication (T. Ergin et al., Science 328, 337 (2010)), three-dimensional broadband dielectric carpet cloaks have been fabricated and experimentally characterized by optical bright-field and dark-field microscopy using unpolarized light from an incandescent lamp.

View Article and Find Full Text PDF

We have designed and realized a three-dimensional invisibility-cloaking structure operating at optical wavelengths based on transformation optics. Our blueprint uses a woodpile photonic crystal with a tailored polymer filling fraction to hide a bump in a gold reflector. We fabricated structures and controls by direct laser writing and characterized them by simultaneous high-numerical-aperture, far-field optical microscopy and spectroscopy.

View Article and Find Full Text PDF

Using home-built dedicated ray-tracing software, we simulate photorealistic images of sceneries in three dimensions including dielectric carpet cloaks--i.e., continuously varying refractive-index distributions that allow for invisibility cloaking of a bump in a metallic carpet.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionq9uiccggrmo6f3848467j5peee5vhpqs): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once