Publications by authors named "Nicolas Shinada"

Assessing the mutagenicity of chemicals is an essential task in the drug development process. Usually, databases and other structured sources for AMES mutagenicity exist, which have been carefully and laboriously curated from scientific publications. As knowledge accumulates over time, updating these databases is always an overhead and impractical.

View Article and Find Full Text PDF

Assessing a compound's mutagenicity using machine learning is an important activity in the drug discovery and development process. Traditional methods of mutagenicity detection, such as Ames test, are expensive and time and labor intensive. In this context, in silico methods that predict a compound mutagenicity with high accuracy are important.

View Article and Find Full Text PDF

VH, i.e., VH domains of camelid single-chain antibodies, are very promising therapeutic agents due to their significant physicochemical advantages compared to classical mammalian antibodies.

View Article and Find Full Text PDF

The number of available protein structures in the Protein Data Bank (PDB) has considerably increased in recent years. Thanks to the growth of structures and complexes, numerous large-scale studies have been done in various research areas, e.g.

View Article and Find Full Text PDF

Intrinsic Disorder Proteins (IDPs) have become a hot topic since their characterisation in the 90s. The data presented in this article are related to our research entitled "A structural entropy index to analyse local conformations in Intrinsically Disordered Proteins" published in Journal of Structural Biology [1]. In this study, we quantified, for the first time, continuum from rigidity to flexibility and finally disorder.

View Article and Find Full Text PDF

Antigen binding by antibodies requires precise orientation of the complementarity- determining region (CDR) loops in the variable domain to establish the correct contact surface. Members of the family Camelidae have a modified form of immunoglobulin gamma (IgG) with only heavy chains, called Heavy Chain only Antibodies (HCAb). Antigen binding in HCAbs is mediated by only three CDR loops from the single variable domain (VH) at the N-terminus of each heavy chain.

View Article and Find Full Text PDF

Sequence - structure - function paradigm has been revolutionized by the discovery of disordered regions and disordered proteins more than two decades ago. While the definition of rigidity is simple with X-ray structures, the notion of flexibility is linked to high experimental B-factors. The definition of disordered regions is more complex as in these same X-ray structures; it is associated to the position of missing residues.

View Article and Find Full Text PDF

Protein structures are highly dynamic macromolecules. This dynamics is often analysed through experimental and/or computational methods only for an isolated or a limited number of proteins. Here, we explore large-scale protein dynamics simulation to observe dynamics of local protein conformations using different perspectives.

View Article and Find Full Text PDF

Halogen atoms have been at the center of many rational medicinal chemistry applications in drug design. While fluorine and chlorine atoms are often added to enhance physicochemical properties, bromine and iodine elements are generally inserted to improve selectivity. Favorable halogen interactions such as halogen bond have been thoroughly studied through quantum mechanics and statistical analyses.

View Article and Find Full Text PDF

About half of the globular proteins are composed of regular secondary structures, α-helices, and β-sheets, while the rest are constituted of irregular secondary structures, such as turns or coil conformations. Other regular secondary structures are often ignored, despite their importance in biological processes. Among such structures, the polyproline II helix (PPII) has interesting behaviours.

View Article and Find Full Text PDF

Protein structures are valuable tools to understand protein function. Nonetheless, proteins are often considered as rigid macromolecules while their structures exhibit specific flexibility, which is essential to complete their functions. Analyses of protein structures and dynamics are often performed with a simplified three-state description, i.

View Article and Find Full Text PDF