MicroRNAs (miRNAs) are ribonucleic acids (RNAs) of ∼21 nucleotides that interfere with the translation of messenger RNAs (mRNAs) and play significant roles in development and diseases. In bilaterian animals, the specificity of miRNA targeting is determined by sequence complementarity involving the seed. However, the role of the remaining nucleotides (non-seed) is only vaguely defined, impacting negatively on our ability to efficiently use miRNAs exogenously to control gene expression.
View Article and Find Full Text PDFIn eucaryotes, gene expression is regulated by microRNAs (miRNAs) which bind to messenger RNAs (mRNAs) and interfere with their translation into proteins, either by promoting their degradation or inducing their repression. We study the effect of miRNA interference on each gene using experimental methods, such as microarrays and RNA-seq at the mRNA level, or luciferase reporter assays and variations of SILAC at the protein level. Alternatively, computational predictions would provide clear benefits.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are naturally occurring small RNAs that regulate the expression of several genes. MiRNAs' targeting rules are based on sequence complementarity between their mature products and targeted genes' mRNAs. Based on our present understanding of those rules, we developed an algorithm to design artificial miRNAs to target simultaneously a set of predetermined genes.
View Article and Find Full Text PDF