Publications by authors named "Nicolas Schall"

This study evaluates the effectiveness and safety of trientine dihydrochloride (TETA 2-HCl) in patients with Wilson disease (WD) following a switch from trientine tetrahydrochloride (TETA 4-HCl). A total of 30 WD patients with stable copper metabolism were identified for treatment with TETA 2-HCl (Cufence™) after prior use of TETA 4-HCl (Cuprior™). Biochemical markers including urinary copper, non-ceruloplasmin bound copper (NCC) and liver function were analyzed at baseline and followed up over 12 months.

View Article and Find Full Text PDF

In systemic lupus erythematosus, T cells display multiple abnormalities. They are abnormally activated, secrete pro-inflammatory cytokines, help B cells to generate pathogenic autoantibodies, and provoke the accumulation of autoreactive memory T cells. P140, a synthetic peptide evaluated in phase-III clinical trials for lupus, binds HSPA8/HSC70 chaperone protein.

View Article and Find Full Text PDF

Dysregulation of CXCL12/SDF-1-CXCR4/CD184 signaling is associated with inflammatory diseases and notably with systemic lupus erythematosus. Issued from the lead molecule chalcone-4, the first neutraligand of the CXCL12 chemokine, LIT-927 was recently described as a potent analogue with improved solubility and stability. We aimed to investigate the capacity of LIT-927 to correct immune alterations in lupus-prone MRL/lpr mice and to explore the mechanism of action implemented by this small molecule in this model.

View Article and Find Full Text PDF

The involvement of autophagy and its dysfunction in asthma is still poorly documented. By using a murine model of chronic house dust mite (HDM)-induced airway inflammation, we tested the expression of several autophagy markers in the lung and spleen of asthma-like animals. Compared to control mice, in HDM-sensitized and challenged mice, the expression of sequestosome-1/p62, a multifunctional adaptor protein that plays an important role in the autophagy machinery, was raised in the splenocytes.

View Article and Find Full Text PDF

Naturally-occurring autoantibodies to certain components of autophagy processes have been described in a few autoimmune diseases, but their fine specificity, their relationships with clinical phenotypes, and their potential pathogenic functions remain elusive. Here, we explored IgG autoantibodies reacting with a panel of cytoplasmic endosomal/lysosomal antigens and individual heat-shock proteins, all of which share links to autophagy. Sera from autoimmune patients and from MRL/lpr and NZB/W lupus-prone mice reacted with the C-terminal residues of lysosome-associated membrane glycoprotein (LAMP)2A.

View Article and Find Full Text PDF

The nuclear translocation of endogenous heat shock cognate protein HSPA8 is a requisite for cell survival during oxidative and heat shock stress. Upon these events, cytoplasmic HSPA8 is thought to concentrate within the nucleus and nucleolus. When the situation returns to normal, HSPA8 is released from its nuclear/nucleolar anchors and redistributes into the cytoplasm.

View Article and Find Full Text PDF

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune disease of the peripheral nerves evolving with diffuse sensory and motor symptoms. Although it is claimed that in neurodegenerative pathologies, a common feature is the failure of proteolytic systems to adequately eliminate aggregated or misfolded proteins, it has not been addressed whether autophagy, a central "clearance" system delivering damaged intracellular components to lysosomes, is affected in CIDP. The focus of the present investigation was therefore to determine if some defects exist in autophagy processes in this setting and if they can be corrected or minimized using an appropriate treatment targeting this survival pathway.

View Article and Find Full Text PDF

Objective: Phosphopeptide P140 (Lupuzor) is an inhibitor of autophagy currently being evaluated in late-stage clinical trials for the treatment of lupus. This study was undertaken to investigate the effect of P140 ex vivo on human T and B cells.

Methods: Human B cells, T cells, and dendritic cells were analyzed by flow cytometry and cellular assays.

View Article and Find Full Text PDF

Sjögren's syndrome is a multifactorial systemic autoimmune disorder characterized by lymphocytic infiltrates in exocrine organs. Patients present with sicca symptoms, such as extensive dry eyes and dry mouth, and parotid enlargement. Other serious complications include profound fatigue, chronic pain, major organ involvement, neuropathies and lymphomas.

View Article and Find Full Text PDF

The rat sciatic nerve has attracted widespread attention as an excellent model system for studying autophagy alterations in peripheral neuropathies. In our laboratory, we have developed an original rat model, which we used currently in routine novel drug screening and to evaluate treatment strategies for chronic inflammatory demyelinating polyneuropathy (CIDP) and other closely related diseases. Lewis rats injected with the S-palmitoylated P0(180-199) peptide develop a chronic, sometimes relapsing-remitting type of disease.

View Article and Find Full Text PDF

Autophagy is a tightly regulated mechanism that allows cells to renew themselves through the lysosomal degradation of proteins, which are misfolded or produced in excess, and of damaged organelles. In the context of immunity, recent research has specially attempted to clarify its roles in infection, inflammation and autoimmunity. Autophagy has emerged as a spotlight in several molecular pathways and trafficking events that participate to innate and adaptive immunity.

View Article and Find Full Text PDF

During inflammatory reaction, neutrophils exhibit numerous cellular and immunological functions, notably the formation of neutrophil extracellular traps (NETs) and autophagy. NETs are composed of decondensed chromatin fibers coated with various antimicrobial molecules derived from neutrophil granules. NETs participate in antimicrobial defense and can also display detrimental roles and notably trigger some of the immune features of systemic lupus erythematosus (SLE) and other autoimmune diseases.

View Article and Find Full Text PDF

Objectives: Inflammation and angiogenesis are two tightly linked processes in arthritis, and therapeutic targeting of pro-angiogenic factors may contribute to control joint inflammation and synovitis progression. In this work, we explored whether vaccination against vascular endothelial growth factor (VEGF) ameliorates collagen-induced arthritis (CIA).

Methods: Anti-VEGF vaccines were heterocomplexes consisting of the entire VEGF cytokine (or a VEGF-derived peptide) linked to the carrier protein keyhole limpet hemocyanin (KLH).

View Article and Find Full Text PDF

The P140 peptide, a 21-mer linear peptide (sequence 131-151) generated from the spliceosomal SNRNP70/U1-70K protein, contains a phosphoserine residue at position 140. It significantly ameliorates clinical manifestations in autoimmune patients with systemic lupus erythematosus and enhances survival in MRL/lpr lupus-prone mice. Previous studies showed that after P140 treatment, there is an accumulation of autophagy markers sequestosome 1/p62 and MAP1LC3-II in MRL/lpr B cells, consistent with a downregulation of autophagic flux.

View Article and Find Full Text PDF

Autoantibodies to nuclear antigens arise in human autoimmune diseases, but a unifying pathogenetic mechanism remains elusive. Recently we reported that exposure of neutrophils to inflammatory conditions induces the citrullination of core histones by peptidylarginine deiminase 4 (PAD4) and that patients with autoimmune disorders produce autoantibodies that recognize such citrullinated histones. Here we identify histone H1 as an additional substrate of PAD4, localize H1 within neutrophil extracellular traps, and detect autoantibodies to citrullinated H1 in 6% of sera from patients with systemic lupus erythematosus and Sjögren's syndrome.

View Article and Find Full Text PDF

Production of high titer of antibodies against nuclear components is a hallmark of systemic lupus erythematosus, an autoimmune disease characterized by the progressive chronic inflammation of multiple joints and organs. Organ damage and dysfunction such as renal failure are typical clinical features in lupus. Cell hypermetabolism and hypertrophy can accelerate organ dysfunction.

View Article and Find Full Text PDF

Synthetic peptides are attracting increasing attention as therapeutics. Despite their potential, however, only a few selected peptides have been able to enter in clinical trials for chronic autoimmune diseases and systemic lupus erythematosus (SLE) in particular. Here, we describe and discuss a series of assays, which may help in characterizing valuable candidate peptides that were applied in our laboratory to develop the lupus P140 peptide program.

View Article and Find Full Text PDF
Article Synopsis
  • There has been a resurgence in the interest of therapeutic peptides as potential drug candidates, moving past a period of neglect due to their challenges with metabolism and bioavailability.
  • New strategies are being developed to improve the effectiveness of peptide-based drugs, leading to a variety of these drugs being marketed for different medical conditions.
  • Although promising results have been found in mouse models for treating autoimmunity, only a few clinical trials are ongoing; one notable peptide, P140/Lupuzor, has successfully completed several phases of clinical trials for systemic lupus erythematosus.
View Article and Find Full Text PDF

The P140 phosphopeptide encompassing residues 131-151 of the spliceosomal U1-70K snRNP protein displays protective properties in lupus patients and MRL/lpr mice. It increases peripheral blood lymphocyte apoptosis via a mechanism involving γδ T cells. After intravenous administration, P140 accumulates in the lungs and spleen.

View Article and Find Full Text PDF

Background: The P140 phosphopeptide issued from the spliceosomal U1-70K small nuclear ribonucleoprotein protein displays protective properties in MRL/lpr lupus-prone mice. It binds both major histocompatibility class II (MHCII) and HSC70/Hsp73 molecules. P140 peptide increases MRL/lpr peripheral blood lymphocyte apoptosis and decreases autoepitope recognition by T cells.

View Article and Find Full Text PDF

The phosphopeptide P140 issued from the spliceosomal U1-70K snRNP protein is recognized by lupus CD4(+) T cells, transiently abolishes T cell reactivity to other spliceosomal peptides in P140-treated MRL/lpr mice, and ameliorates their clinical features. P140 modulates lupus patients' T cell response ex vivo and is currently included in phase IIb clinical trials. Its underlying mechanism of action remains elusive.

View Article and Find Full Text PDF

Objective: To assess the safety, tolerability, and efficacy of spliceosomal peptide P140 (IPP-201101; sequence 131-151 of the U1-70K protein phosphorylated at Ser140), which is recognized by lupus CD4+ T cells, in the treatment of patients with systemic lupus erythematosus (SLE).

Methods: An open-label, dose-escalation phase II study was conducted in two centers in Bulgaria. Twenty patients (2 male and 18 female) with moderately active SLE received 3 subcutaneous (SC) administrations of a clinical batch of P140 peptide at 2-week intervals.

View Article and Find Full Text PDF

The bitter acids of hops (Humulus lupulus L.) mainly consist of humulones or alpha-acids and lupulones or beta-acids. We aimed to evaluate the antiproliferative mechanisms of lupulones on a human metastatic colon carcinoma-derived cell line (SW620 cells) and to assess their chemopreventive effects in a model of colon carcinogenesis.

View Article and Find Full Text PDF