Am J Respir Crit Care Med
September 2024
Hepatopulmonary syndrome (HPS) is a severe complication of liver diseases characterized by abnormal dilation of pulmonary vessels, resulting in impaired oxygenation. Recent research highlights the pivotal role of liver-produced BMP-9 (bone morphogenetic protein-9) in maintaining pulmonary vascular integrity. This study aimed to investigate the involvement of BMP-9 in human and experimental HPS.
View Article and Find Full Text PDFAims: BMP9 is a high affinity ligand of ALK1 and endoglin receptors that are mutated in the rare genetic vascular disorder hereditary hemorrhagic telangiectasia (HHT). We have previously shown that loss of Bmp9 in the 129/Ola genetic background leads to spontaneous liver fibrosis via capillarization of liver sinusoidal endothelial cells (LSEC) and kidney lesions. We aimed to decipher the molecular mechanisms downstream of BMP9 to better characterize its role in vascular homeostasis in different organs.
View Article and Find Full Text PDFBackground: Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood.
View Article and Find Full Text PDFEndothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input.
View Article and Find Full Text PDFDespite the clinical importance of arteriogenesis, this biological process is poorly understood. ERK1 and ERK2 are key components of a major intracellular signaling pathway activated by vascular endothelial growth (VEGF) and FGF2, growth factors critical to arteriogenesis. To investigate the specific role of each ERK isoform in arteriogenesis, we used mice with a global knockout as well as and floxed mice to delete or in endothelial cells, macrophages, and smooth muscle cells.
View Article and Find Full Text PDFThe aim of the present work was to address the role of BMP9 in different genetic backgrounds (C57BL/6, BALB/c, and 129/Ola) of mice deleted for . We found that deletion led to premature mortality only in the 129/Ola strain. We have previously shown that deletion led to liver sinusoidal endothelial cells (LSEC) capillarization and liver fibrosis in the 129/Ola background.
View Article and Find Full Text PDFTo define the role of ERK1/2 signaling in the quiescent endothelium, we induced endothelial knockout in adult mice. This resulted in a rapid onset of hypertension, a decrease in eNOS expression, and an increase in endothelin-1 plasma levels, with all mice dying within 5 wk. Immunostaining and endothelial fate mapping showed a robust increase in TGFβ signaling leading to widespread endothelial-to-mesenchymal transition (EndMT).
View Article and Find Full Text PDFBone morphogenetic protein 9 (BMP9) is a circulating factor produced by hepatic stellate cells that plays a critical role in vascular quiescence through its endothelial receptor activin receptor-like kinase 1 (ALK1). Mutations in the gene encoding ALK1 cause hereditary hemorrhagic telangiectasia type 2, a rare genetic disease presenting hepatic vessel malformations. Variations of both the circulating levels and the hepatic mRNA levels of BMP9 have been recently associated with various forms of hepatic fibrosis.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure (mPAP), resulting in a progressive functional decline despite current available therapeutic options. There are multiple mechanisms predisposing to and/or promoting the aberrant pulmonary vascular remodeling in PAH, and these involve not only altered crosstalk between cells within the vascular wall but also sustained inflammation and dysimmunity, cell accumulation in the vascular wall and excessive activation of some growth factor-stimulated signaling pathways, in addition to the interaction of systemic hormones, local growth factors, cytokines, and transcription factors. Heterozygous germline mutations in the bone morphogenetic protein receptor, type-2 (BMPR2) gene, a gene encoding a receptor for the transforming growth factor (TGF)-β superfamily, can predispose to the disease.
View Article and Find Full Text PDFRationale: Inflammation and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). CD74 is a receptor for the proinflammatory cytokine macrophage migration inhibitory factor (MIF). This ligand/receptor complex initiates survival pathways and cell proliferation, and it triggers the synthesis and secretion of major proinflammatory factors and cell adhesion molecules.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2015
The transition to pulmonary respiration after birth requires rapid alterations in the structure of the mammalian cardiovascular system. One dramatic change that occurs is the closure of the ductus arteriosus (DA), an arterial connection in the fetus that directs blood flow away from the pulmonary circulation. Two members of the TGFβ family, bone morphogenetic protein 9 (BMP9) and BMP10, have been recently involved in postnatal angiogenesis, both being necessary for remodeling of newly formed microvascular beds.
View Article and Find Full Text PDFBlood vascular networks in vertebrates are essential to tissue survival. Establishment of a fully functional vasculature is complex and requires a number of steps including vasculogenesis and angiogenesis that are followed by differentiation into specialized vascular tissues (i.e.
View Article and Find Full Text PDFExcessive proliferation of pulmonary arterial smooth muscle cells (PA-SMCs) and perivascular inflammation lead to pulmonary arterial hypertension (PAH) progression, but they are not specifically targeted by the current therapies. Since leptin (Ob) and its main receptor ObR-b contribute to systemic vascular cell proliferation and inflammation, we questioned whether targeting Ob/ObR-b axis would be an effective antiproliferative and anti-inflammatory strategy against PAH. In idiopathic PAH (iPAH), using human lung tissues and primary cell cultures (early passages ≤5), we demonstrate that pulmonary endothelial cells (P-ECs) over produce Ob and that PA-SMCs overexpress ObR-b.
View Article and Find Full Text PDFPulmonary arterial hypertension (PAH) is a disorder in which mechanical obstruction of the pulmonary vascular bed is largely responsible for the rise in mean pulmonary arterial pressure, resulting in a progressive functional decline despite current available therapeutic options. The fundamental pathogenetic mechanisms underlying this disorder include pulmonary vasoconstriction, in situ thrombosis, medial hypertrophy, and intimal proliferation, leading to occlusion of the small to mid-sized pulmonary arterioles and the formation of plexiform lesions. Several predisposing or promoting mechanisms that contribute to excessive pulmonary vascular remodeling in PAH have emerged, such as altered crosstalk between cells within the vascular wall, sustained inflammation and dysimmunity, inhibition of cell death, and excessive activation of signaling pathways, in addition to the impact of systemic hormones, local growth factors, cytokines, transcription factors, and germline mutations.
View Article and Find Full Text PDFBackground: Pericytes and their crosstalk with endothelial cells are critical for the development of a functional microvasculature and vascular remodeling. It is also known that pulmonary endothelial dysfunction is intertwined with the initiation and progression of pulmonary arterial hypertension (PAH). We hypothesized that pulmonary endothelial dysfunction, characterized by abnormal fibroblast growth factor-2 and interleukin-6 signaling, leads to abnormal microvascular pericyte coverage causing pulmonary arterial medial thickening.
View Article and Find Full Text PDFAlthough the causal pathomechanisms contributing to remodelling of the pulmonary vascular bed in pulmonary arterial hypertension (PAH) are still unclear, several analogous features with carcinogenesis have led to the emergence of the cancer-like concept. The major similarities concern the altered crosstalk between cells from different tissue types, unexplained proliferation and survival of pulmonary smooth muscle and endothelial cells, the metabolic (glycolytic) shifts, and the association with the immune system. However, major differences between PAH and cancer exist, including the absence of invasion and metastasis, as well as the pathogenic genes involved and the degrees of angiogenesis impairment and genetic instability.
View Article and Find Full Text PDFALK1 is a type I receptor of the TGF-β family that is involved in angiogenesis. Circulating BMP9 was identified as a specific ligand for ALK1 inducing vascular quiescence. In this work, we found that blocking BMP9 with a neutralizing antibody in newborn mice significantly increased retinal vascular density.
View Article and Find Full Text PDFBone Morphogenetic Protein 9 (BMP9) has been recently found to be the physiological ligand for the activin receptor-like kinase 1 (ALK1), and to be a major circulating vascular quiescence factor. Moreover, a soluble chimeric ALK1 protein (ALK1-Fc) has recently been developed and showed powerful anti-tumor growth and anti-angiogenic effects. However, not much is known concerning BMP9.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetically inheritable vascular dysplasia caused by mutations in genes encoding receptors of the transforming growth factor-beta (TGF-beta) family: ENG, encoding endoglin (HHT1), and ACVRL1, encoding activin receptor-like kinase-1 (ALK1; HHT2). Our recent discovery of bone morphogenetic protein 9 (BMP9) as the specific ligand for ALK1 allowed us to reevaluate the functional significance of ACVRL1 mutations. We generated 19 ALK1 mutants reproducing HHT2 mutations (4 were novel mutations) found throughout the protein.
View Article and Find Full Text PDF