Publications by authors named "Nicolas Pouilly"

Sunflower is a hybrid crop that is considered moderately drought-tolerant and adapted to new cropping systems required for the agro-ecological transition. Here, we studied the impact of hybridity status (hybrids vs. inbred lines) on the responses to drought at the molecular and eco-physiological level exploiting publicly available datasets.

View Article and Find Full Text PDF
Article Synopsis
  • Crop wild relatives are important for improving crops by providing genetic traits that help with climate change and disease resilience.
  • Research on sunflowers revealed that while introgressing wild genes can introduce beneficial genetic diversity, it often negatively affects yield and quality due to linkage drag.
  • The study suggests that breeding should prioritize closely related wild relatives to minimize adverse effects while enhancing desirable traits in cultivated sunflowers.
View Article and Find Full Text PDF

Introduction: Sunflower breeding for resistance to the parasitic plant sunflower broomrape (Orobanche cumana Wallr.) requires the identification of novel resistance genes. In this research, we conducted a genome-wide association study (GWAS) to identify QTLs associated with broomrape resistance.

View Article and Find Full Text PDF

Sunflower broomrape ( Wallr.) is a holoparasitic plant that causes major yield losses to sunflower crops in the Old World. Efforts to understand how this parasitic weed recognizes and interacts with sunflowers are important for developing long-term genetic resistance strategies.

View Article and Find Full Text PDF

This study compares five models of GWAS, to show the added value of non-additive modeling of allelic effects to identify genomic regions controlling flowering time of sunflower hybrids. Genome-wide association studies are a powerful and widely used tool to decipher the genetic control of complex traits. One of the main challenges for hybrid crops, such as maize or sunflower, is to model the hybrid vigor in the linear mixed models, considering the relatedness between individuals.

View Article and Find Full Text PDF

Background: Phoma macdonaldii has been reported as the causal agent of black stem disease (BS) and premature ripening (PR) on sunflower. PR is considered as the most widespread and detrimental disease on sunflower in France. While genetic variability and QTL mapping for partial resistance of sunflower to stem, collar and roots attacks have been reported on plantlets in controlled conditions, this work aims to describe the genetic variability in a subset of a sunflower lines, and for the first time to map QTL involved in PR resistance evaluated in field conditions using controlled inoculation.

View Article and Find Full Text PDF

Prediction of hybrid performance using incomplete factorial mating designs is widely used in breeding programs including different heterotic groups. Based on the general combining ability (GCA) of the parents, predictions are accurate only if the genetic variance resulting from the specific combining ability is small and both parents have phenotyped descendants. Genomic selection (GS) can predict performance using a model trained on both phenotyped and genotyped hybrids that do not necessarily include all hybrid parents.

View Article and Find Full Text PDF
Article Synopsis
  • The domesticated sunflower, known as Helianthus annuus L., shows potential for climate change adaptation due to its ability to produce stable yields under varying environmental conditions, including drought.
  • Researchers have created a high-quality reference for the sunflower genome, covering 3.6 gigabases, which includes insights into its evolutionary history and whole-genome duplications that occurred millions of years ago.
  • This work enables the development of gene networks linked to key traits like flowering time and oil metabolism, setting the stage for future improvements in sunflower resilience and oil production relevant to agricultural and nutritional needs.
View Article and Find Full Text PDF

Understanding the genetic basis of phenotypic plasticity is crucial for predicting and managing climate change effects on wild plants and crops. Here, we combined crop modelling and quantitative genetics to study the genetic control of oil yield plasticity for multiple abiotic stresses in sunflower. First, we developed stress indicators to characterize 14 environments for three abiotic stresses (cold, drought and nitrogen) using the SUNFLO crop model and phenotypic variations of three commercial varieties.

View Article and Find Full Text PDF

SNP genotyping of 114 cultivated sunflower populations showed that the multiplication process and the main traits selected during breeding of sunflower cultivars drove molecular diversity of the populations. The molecular diversity in a set of 114 cultivated sunflower populations was studied by single-nucleotide polymorphism genotyping. These populations were chosen as representative of the 400 entries in the INRA collection received or developed between 1962 and 2011 and made up of land races, open-pollinated varieties, and breeding pools.

View Article and Find Full Text PDF

De novo sequencing of complex genomes is one of the main challenges for researchers seeking high-quality reference sequences. Many de novo assemblies are based on short reads, producing fragmented genome sequences. Third-generation sequencing, with read lengths >10 kb, will improve the assembly of complex genomes, but these techniques require high-molecular-weight genomic DNA (gDNA), and gDNA extraction protocols used for obtaining smaller fragments for short-read sequencing are not suitable for this purpose.

View Article and Find Full Text PDF

Orobanche cumana (sunflower broomrape) is an obligatory and non-photosynthetic root parasitic plant that specifically infects the sunflower. It is located in Europe and in Asia, where it can cause yield losses of over 80%. More aggressive races have evolved, mainly around the Black Sea, and broomrape can rapidly spread to new areas.

View Article and Find Full Text PDF

The obligate biotroph oomycete Plasmopara halstedii causes downy mildew on sunflower crop, Helianthus annuus. The breakdown of several Pl resistance genes used in sunflower hybrids over the last 25 years came along with the appearance of new Pl. halstedii isolates showing modified virulence profiles.

View Article and Find Full Text PDF

Association mapping and linkage mapping were used to identify quantitative trait loci (QTL) and/or causative mutations involved in the control of flowering time in cultivated sunflower Helianthus annuus. A panel of 384 inbred lines was phenotyped through testcrosses with two tester inbred lines across 15 location × year combinations. A recombinant inbred line (RIL) population comprising 273 lines was phenotyped both per se and through testcrosses with one or two testers in 16 location × year combinations.

View Article and Find Full Text PDF

Interest in phytosterol contents due to their potential benefits for human health has been largely documented in several crop species. Studies were focused mainly on total sterol content and their concentration or distribution in seed. This study aimed at providing new insight into the genetic control of total and individual sterol contents in sunflower seed through QTL analyses in a RIL population characterized over 2 years showing contrasted rainfall during seed filling.

View Article and Find Full Text PDF

Major gene resistance to sunflower downy mildew (Plasmopara halstedii) races 304 and 314 was found to segregate independently from the resistance to races 334, 307 and 304 determined by the gene Pl2, already positioned on Linkage Group (LG) 8 of sunflower molecular maps. Using a consensus SSR-SNP map constructed from the INEDI RIL population and a new RIL population FU × PAZ2, the positions of Pl2 and Pl5 were confirmed and the new gene, denoted Pl21, was mapped on LG13, at 8 cM from Pl5. The two RIL populations were observed for their quantitative resistance to downy mildew in the field and both indicated the existence of a QTL on LG8 at 20-40 cM from the major resistance gene cluster.

View Article and Find Full Text PDF

Centromeres and telomeres are obvious markers on chromosomes but their location on genetic maps is difficult to determine, which hampers many basic and applied research programmes. In this study, we used the characteristic distribution of five Brassica repeated sequences to generate physically anchored molecular markers tentatively tagging Brassica centromeres (84 markers) and telomeres (31 markers). These markers were mapped to the existing oilseed rape genetic map.

View Article and Find Full Text PDF