Publications by authors named "Nicolas Peyrot"

Objectives: To compare the effects of explosive and strength resistance training on neuromuscular and functional parameters in older adults and to analyze the relationship between changes in walking speed and improvements in plantar flexor (PF) neuromuscular parameters following interventions.

Methods: In total, 40 participants were randomly assigned to either an explosive resistance training group (EXG, n = 18; age = 80.41 ± 10.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how different push-off distances affect the maximum height of jumps among CrossFit athletes during countermovement jumps.
  • Results indicated a quadratic relationship between push-off distance and jump height, revealing that each athlete has an optimal push-off distance for maximizing their jump.
  • Additionally, longer push-off distances increased push-off time and decreased mean vertical external force, affecting overall jump performance by altering joint angles and torque production in the process.
View Article and Find Full Text PDF

The triceps surae muscle, composed of the gastrocnemius and soleus muscles, plays a major role in forward propulsion during walking. By generating positive ankle power during the push-off phase, these muscles produce the propulsive force required for forward progression. This study aimed to test the hypothesis that applying functional electrical stimulation (FES) to these muscles (soleus, gastrocnemius or the combination of the two) during the push-off phase would increase the ankle power generation and, consequently, enhance forward propulsion during walking in able-bodied adults.

View Article and Find Full Text PDF

Sudlow, A, Galantine, P, Del Sordo, G, Raymond, J-J, Dalleau, G, Peyrot, N, and Duché, P. Influence of growth, maturation, and sex on maximal power, force, and velocity during overground sprinting. J Strength Cond Res 38(3): 491-500, 2024-In pediatric populations maximal anaerobic power, force, and velocity capabilities are influenced by changes in body dimensions and muscle function.

View Article and Find Full Text PDF

Our study aimed to compare explosive performance and underlying mechanical determinants explored through F-V profiles in jumping and sprinting among young soccer players based on their playing position. Ninety elite soccer players were categorized into the following positions: goalkeepers, central defenders, wide defenders, central midfielders, wide midfielders, and forwards. Two testing sessions were conducted to measure the 30-metre sprint time (T30) using an over-ground sprint test and jump height (Hmax) through the SJ test.

View Article and Find Full Text PDF

Background: This systematic review aimed to provide a comprehensive overview of the effects of functional electrical stimulation (FES) on gait characteristics in healthy individuals.

Methods: Six electronic databases (PubMed, Embase, Epistemonikos, PEDro, COCHRANE Library, and Scopus) were searched for studies evaluating the effects of FES on spatiotemporal, kinematic, and kinetic gait parameters in healthy individuals. Two examiners evaluated the eligibility and quality of the included studies using the PEDro scale.

View Article and Find Full Text PDF

Evidence suggests that whole-body angular momentum (WBAM) is a highly controlled mechanical variable for performing our daily motor activities safely and efficiently. Recent findings have revealed that, compared to young adults, older adults exhibit larger range of WBAM during various motor tasks, such as walking and stepping. However, it remains unclear whether these age-related changes are ascribed to a poorer control of WBAM with age or not.

View Article and Find Full Text PDF

In recent years, running has dramatically increased in children and adolescents, creating a need for a better understanding of running gait in this population; however, research on this topic is still limited. During childhood and adolescence multiple factors exist that likely influence and shape a child's running mechanics and contribute to the high variability in running patterns. The aim of this narrative review was to gather together and assess the current evidence on the different factors that influence running gait throughout youth development.

View Article and Find Full Text PDF

The ability to produce muscle power during sprint acceleration is a major determinant of physical performance. The comparison of the force-velocity (F-v: theoretical maximal force, F; velocity, v and maximal power output, P) profile between men and women has attracted little attention. Most studies of sex differences have failed to apply a scaling ratio when reporting data.

View Article and Find Full Text PDF

Background: Chronic non-specific neck pain (CINP) is common, but the etiology remains unclear. This study aimed to examine the relationship between cervical muscle composition (cervical multifidus and longus capitis/longus colli), morphometry, range of movement, muscle function, and disability severity (Neck Disability Index) in patients with CINP. Methods: From September 2020 to July 2021, subjects underwent cervical MRI and clinical tests (cervical range of motion, cranio-cervical flexion test, neck flexor, and extensor muscle endurance).

View Article and Find Full Text PDF

Objective: There are limited reports about the reliability of measuring neck extensor muscle strength using a portable dynamometer in neck pain patients. The aims of the current study were 1) to investigate intra- and inter-rater reliability of neck extensor isometric strength measurement using a portable dynamometer in patients with chronic nonspecific neck pain (CNSNP) and 2) to compare neck extensor isometric strength in participants with and without CNSNP.

Methods: Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were followed.

View Article and Find Full Text PDF

The aim was to determine the respective influences of sprinting maximal power output ( ) and mechanical Force-velocity (F-v) profile (ie, ratio between horizontal force production capacities at low and high velocities) on sprint acceleration performance. A macroscopic biomechanical model using an inverse dynamics approach applied to the athlete's center of mass during running acceleration was developed to express the time to cover a given distance as a mathematical function of and F-v profile. Simulations showed that sprint acceleration performance depends mainly on , but also on the F-v profile, with the existence of an individual optimal F-v profile corresponding, for a given , to the best balance between force production capacities at low and high velocities.

View Article and Find Full Text PDF

Recent evidence suggests that during volitional stepping older adults control whole-body angular momentum (H) less effectively than younger adults, which may impose a greater challenge for balance control during this task in the elderly. This study investigated the influence of aging on the segment angular momenta and their contributions to H during stepping. Eighteen old and 15 young healthy adults were instructed to perform a series of stepping at two speed conditions: preferred and as fast as possible.

View Article and Find Full Text PDF

Recent evidence suggests that older adults may have difficulty controlling whole-body angular momentum (H) during volitional stepping, which could impose a major challenge for balance control and result in potential falls. However, it is not known if and how H is influenced by speed when stepping. This study aimed to investigate the effect on H of increasing speed during step initiation in older adults.

View Article and Find Full Text PDF

Background: Cancer-related fatigue (CRF) is the most reported side effect of cancer and its treatments. This distressing sense of exhaustion critically impairs quality of life and can persist for years after treatment completion. Mechanisms of CRF are multidimensional (eg, physical, psychological, or behavioral), suggesting the need for a complex assessment.

View Article and Find Full Text PDF

Context: Strength-endurance mainly depends on the power output, which is often expressed relative to the individual's maximal power capability ( ). However, an individual can develop the same power, but in different combinations of force and velocity (force-velocity condition). Also, at matched power output, changing the force-velocity condition results in a change of the velocity-specific relative power ( ), associated with a change in the power reserve.

View Article and Find Full Text PDF

Obesity is known to have a detrimental effect on balance and motor performance during daily motor tasks. However, it remains unclear whether these obesity-related impairments are due to deficient anticipatory postural adjustments (APA) that precede voluntary movement. The objective of this study was to examine the effects of obesity on APA and the impacts related on motor performance and mediolateral postural stability during gait initiation.

View Article and Find Full Text PDF

Objective: The aim of this study was to develop specific prediction equations based on acceleration data measured at three body sites for estimating energy expenditure (EE) during static and active conditions in middle-aged and older adults with and without type 2 diabetes (T2D).

Research Methods: Forty patients with T2D (age: 40-74 yr, body mass index (BMI): 21-29.4 kg·m) and healthy participants (age: 47-79 yr, BMI: 20.

View Article and Find Full Text PDF

Background: Appropriate control of whole-body angular momentum (H) is crucial to maintain dynamic balance and thus avoid falling during daily activities. Poor H control ability during locomotion has been found in people with an increased risk of falling, such as post-stroke patients and amputees. In contrast, little is known about the control of H during locomotion in the elderly.

View Article and Find Full Text PDF

Shoulder performance and sensorimotor control assessments help to identify shoulder instabilities and document the rehabilitation progress. Testing seated subjects in a position of hand prehension requires less controlled adjustments to maintain body balance in a clinically relevant situation. The objective of this work was to determine the test-retest repeatability of a novel shoulder stability test in seated subjects with the ipsi-lateral hand in prehension during four arm loading conditions.

View Article and Find Full Text PDF

Purpose: Although walking is the most commonly recommended activity for patients with type 2 diabetes (T2D), these patients walk daily less than their healthy peers and adopt a lower self-selected speed. It has been suggested that gait alterations observed in this population could be responsible for a higher metabolic rate (MR) during walking. Thus, the aim of this study was to compare relationship between MR, the energy cost of walking per unit of distance (Cw) and self-selected walking speed in T2D patients and healthy individuals.

View Article and Find Full Text PDF

Free vertical moment (FVM) of ground reaction is recognized to be a meaningful indicator of torsional stress on the lower limbs when walking. The purpose of this study was to examine whether and how gait speed influences the FVM when walking. Fourteen young healthy adults performed a series of overground walking trials at three different speeds: low, preferred and fast.

View Article and Find Full Text PDF

Purpose: The aim of this study was to test the validity of a method using an inertial measurement unit for estimating activity-related energy expenditure (AEE) during walking in middle-aged adults.

Methods: Twenty healthy middle-aged participants completed different treadmill walking trials with an inertial measurement unit adhered to their lower back. Gas exchange was monitored with indirect calorimetry.

View Article and Find Full Text PDF

During gait initiation, anticipatory postural adjustments (APA) precede the execution of the first step. It is generally acknowledged that these APA contribute to forward progression but also serve to stabilize the whole body in the mediolateral direction during step execution. Although previous studies have shown that changes in the distribution of body weight between both legs influence motor performance during gait initiation, it is not known whether and how such changes affect a person's postural stability during this task.

View Article and Find Full Text PDF

Physical activity (PA) is an important non-therapeutic tool in primary prevention and treatment of diabetes mellitus (DM). To improve activity-based health management, patients need to quantify activity-related energy expenditure and the other components of total daily energy expenditure. This review explores differences between the components of total energy expenditure in patients with DM and healthy people and presents various tools for assessing the energy expenditure in subjects with DM.

View Article and Find Full Text PDF