Publications by authors named "Nicolas Perriere"

Loss of endothelial integrity and vascular leakage are central features of sepsis pathogenesis; however, no effective therapeutic mechanisms for preserving endothelial integrity are available. Here we show that, compared to dermal microvessels, brain microvessels resist infection by Neisseria meningitidis, a bacterial pathogen that causes sepsis and meningitis. By comparing the transcriptional responses to infection in dermal and brain endothelial cells, we identified angiopoietin-like 4 as a key factor produced by the brain endothelium that preserves blood-brain barrier integrity during bacterial sepsis.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) protects the brain from toxins but hinders the penetration of neurotherapeutic drugs. Therefore, the blood-to-brain permeability of chemotherapeutics must be carefully evaluated. Here, we aimed to establish a workflow to generate primary cultures of human brain microvascular endothelial cells (BMVECs) to study drug brain permeability and bioavailability.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1-4 (TRPV1-4) expression and functionality were investigated in brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB) from rat and human origins. In rat, Trpv1-4 were detected by qRT-PCR in the brain cortex, brain microvessels, and in primary cultures of brain microvessel endothelial cells [rat brain microvessel endothelial cells (rPBMEC)]. A similar expression profile in isolated brain microvessels and rPBMEC was found with the following order: > > > .

View Article and Find Full Text PDF

Organic cation transporters (OCTs) participate in the handling of compounds in kidneys and at the synaptic cleft. Their role at the blood-brain barrier (BBB) in brain drug delivery is still unclear. The presence of OCT1,2,3 (SLC22A1-3) in mouse, rat and human isolated brain microvessels was investigated by either qRT-PCR, quantitative proteomics and/or functional studies.

View Article and Find Full Text PDF

The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies.

View Article and Find Full Text PDF

Variability in drug response to lithium (Li) is poorly understood and significant, as only 40% of patients with bipolar disorder highly respond to Li. Li can be transported by sodium (Na) transporters in kidney tubules or red blood cells, but its transport has not been investigated at the blood-brain barrier (BBB). Inhibition and/or transcriptomic strategies for Na transporters such as NHE (SLC9), NBC (SLC4), and NKCC (SLC12) were used to assess their role on Li transport in human brain endothelial cells.

View Article and Find Full Text PDF

Objective: The vascular system is adapted to specific functions in different tissues and organs. Vascular endothelial cells are important elements of this adaptation, leading to the concept of 'specialized endothelial cells'. The phenotype of these cells is highly dependent on their specific microenvironment and when isolated and cultured, they lose their specific features after few passages, making models using such cells poorly predictive and irreproducible.

View Article and Find Full Text PDF

Several in vivo studies suggest that docosahexaenoic acid (22:6 n-3), the main n-3 long-chain polyunsaturated fatty acids (LC-PUFA) of brain membranes, could be an important regulator of brain energy metabolism by affecting glucose utilization and the density of the two isoforms of the glucose transporter-1 (GLUT1) (endothelial and astrocytic). This study was conducted to test the hypothesis that 22:6 n-3 in membranes may modulate glucose metabolism in brain endothelial cells. It compared the impact of 22:6 n-3 and the other two main LC-PUFA, arachidonic acid (20:4 n-6) and eicosapentaenoic acid (20:5 n-3), on fatty acid composition of membrane phospholipids, glucose uptake and expression of 55-kDa GLUT1 isoform in two models of rat brain endothelial cells (RBEC), in primary culture and in the immortalized rat brain endothelial cell line RBE4.

View Article and Find Full Text PDF

Physiological studies of the blood-brain barrier (BBB) are often performed in rats. We describe the functional characterization of a reproducible in vitro model of the rat BBB and its validation for investigating mechanisms involved in BBB regulation. Puromycin-purified primary cultures of brain endothelial cells, co-cultured with astrocytes in the presence of hydrocortisone (HC) and cAMP, presented low sucrose permeability (< or =0.

View Article and Find Full Text PDF

The conversion of prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion diseases. Although PrP(C) is highly expressed in neurons and other cell types, its physiological function still remains elusive. Here, we describe how we evaluated its expression, subcellular localization and putative function in brain endothelial cells, which constitute the blood-brain barrier.

View Article and Find Full Text PDF