In many different domains, experts can make complex decisions after glancing very briefly at an image. However, the perceptual mechanisms underlying expert performance are still largely unknown. Recently, several machine learning algorithms have been shown to outperform human experts in specific tasks.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
In metastatic breast cancer, bone metastases are prevalent and associated with multiple complications. Assessing their response to treatment is therefore crucial. Most deep learning methods segment or detect lesions on a single acquisition while only a few focus on longitudinal studies.
View Article and Find Full Text PDFOne of the most common treatments for infertile couples is In Vitro Fertilization (IVF). It consists of controlled ovarian hyperstimulation, followed by ovum pickup, fertilization, and embryo culture for 2-6 days under controlled environmental conditions, leading to intrauterine transfer or freezing of embryos identified as having a good implantation potential by embryologists. To allow continuous monitoring of embryo development, Time-lapse imaging incubators (TLI) were first released in the IVF market around 2010.
View Article and Find Full Text PDFBackground: Artificial Intelligence (AI)/Machine Learning (ML) applications have been proven efficient to improve diagnosis, to stratify risk, and to predict outcomes in many respective medical specialties, including in orthopaedics.
Challenges And Discussion: Regarding hip and knee reconstruction surgery, AI/ML have not made it yet to clinical practice. In this review, we present sound AI/ML applications in the field of hip and knee degenerative disease and reconstruction.
Metastatic breast cancer patients receive lifelong medication and are regularly monitored for disease progression. The aim of this work was to (1) propose networks to segment breast cancer metastatic lesions on longitudinal whole-body PET/CT and (2) extract imaging biomarkers from the segmentations and evaluate their potential to determine treatment response. Baseline and follow-up PET/CT images of 60 patients from the EPICUREseinmeta study were used to train two deep-learning models to segment breast cancer metastatic lesions: One for baseline images and one for follow-up images.
View Article and Find Full Text PDFComputer-aided diagnostic tools using deep neural networks are efficient for detection of lesions in endoscopy but require a huge number of images. The impact of the quality of annotation has not been tested yet. Here we describe a multi-expert annotated dataset of images extracted from capsules from Crohn's disease patients and the impact of the quality of annotations on the accuracy of a recurrent attention neural network.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2012
The discrete Fourier transform (DFT) underpins the solution to many inverse problems commonly possessing missing or unmeasured frequency information. This incomplete coverage of the Fourier space always produces systematic artifacts called Ghosts. In this paper, a fast and exact method for deconvolving cyclic artifacts caused by missing slices of the DFT using redundant image regions is presented.
View Article and Find Full Text PDF