Publications by authors named "Nicolas Mesnier"

The structure of mouse atherosclerotic lesions may differ from that of humans, and mouse atherosclerotic plaques do not rupture except in some specific locations such as the brachiocephalic artery. Recently, our group was the first to observe that the amplitudes of in vivo stresses in ApoE-/- mouse aortic atherosclerotic lesions were much lower and differed from those found in a previous work performed on human lesions. In this previous preliminary work, we hypothesized that the plaque mechanical properties (MP) may in turn be responsible for such species differences.

View Article and Find Full Text PDF

Objective: Despite the fact that mechanical stresses are well recognized as key determinants for atherosclerotic plaque rupture, very little is known about stress amplitude and distribution in atherosclerotic lesions, even in the standard apolipoprotein E (apoE)-/- mouse model of atherosclerosis. Our objectives were to combine immunohistology, atomic force microscopy measurements, and finite element computational analysis for the accurate quantification of stress amplitude and distribution in apoE-/- mouse aortic atherosclerotic lesions.

Methods And Results: Residual stresses and strains were released by radially cutting aortic arch segments from 7- to 30-week-old pathological apoE-/- (n=25) and healthy control mice (n=20).

View Article and Find Full Text PDF

Several studies have suggested that evolving mechanical stresses and strains drive atherosclerotic plaque development and vulnerability. Especially, stress distribution in the plaque fibrous capsule is an important determinant for the risk of vulnerable plaque rupture. Knowledge of the stiffness of atherosclerotic plaque components is therefore of critical importance.

View Article and Find Full Text PDF