Nicotine is the primary psychoactive component of tobacco. Its reinforcing and addictive properties depend on nicotinic acetylcholine receptors (nAChRs) located within the mesolimbic axis originating in the ventral tegmental area (VTA). The roles and oligomeric assembly of subunit α4- and subunit α6-containing nAChRs in dopaminergic (DAergic) neurons are much debated.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system and modulate neuronal function in most mammalian brain structures. The contribution of defined nAChR subunits to a specific behavior is thus difficult to assess. Mice deleted for beta2-containing nAChRs (beta2-/-) have been shown to be hyperactive in an open-field paradigm, without determining the origin of this hyperactivity.
View Article and Find Full Text PDFChronic nicotine exposure results in long-term homeostatic regulation of nicotinic acetylcholine receptors (nAChRs) that play a key role in the adaptative cellular processes leading to addiction. However, the relative contribution of the different nAChR subunits in this process is unclear. Using genetically modified mice and pharmacological manipulations, we provide behavioral, electrophysiological, and pharmacological evidence for a long-term mechanism by which chronic nicotine triggers opposing processes differentially mediated by beta2*- vs.
View Article and Find Full Text PDF