Context: The relentless need for new materials to be used in electronic devices has opened new research directions in materials science. One of them involves using two-dimensional materials, among which there is current interest in using germanene. The heteroatom doping of germanene has been proposed as a possible approach to fine-tuning its electronic properties.
View Article and Find Full Text PDFThe two-dimensional (2D) materials class earned a boost in 2021 with biphenylene synthesis, which is structurally formed by the fusion of four-, six-, and eight-membered carbon rings, usually named 4-6-8-biphenylene network (BPN). This research proposes a detailed study of electronic, structural, dynamic, and mechanical properties to demonstrate the potential of the novel biphenylene-like indium nitride (BPN-InN) via density functional theory and molecular dynamics simulations. The BPN-InN has a direct band gap energy transition of 2.
View Article and Find Full Text PDFContext: The discovery of graphene gave way to the search for new two-dimensional structures. In this regard, octa-graphene is a carbon allotrope consisting of 4- and 8-membered rings in a single planar sheet, drawing the research community's attention to study their inorganic analogs. Considering the promising properties of octa-graphene-like structures and the role of GaAs and GaP in semiconductor physics, this study aims to propose, for the first time, two novel inorganics buckled nanosheets based on the octa-graphene structure, the octa-GaAs and octa-GaP.
View Article and Find Full Text PDF