Among patients with human epidermal growth factor receptor 2-positive (HER2+) metastatic breast cancer (MBC), incidence of brain metastases (BMs) is relatively high and increasing. Despite the high unmet need for patients with HER2+ MBC and BMs, real-world data on treatment patterns and outcomes for these patients are limited. To compare treatment patterns and overall survival (OS) among patients with HER2+ MBC with and without BMs in the United States.
View Article and Find Full Text PDFBackground: Many patients with metastatic human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) are candidates for trastuzumab emtansine (T-DM1) treatment sometime in their disease history. KAMILLA evaluated safety of T-DM1 in patients with previously treated HER2-positive locally advanced or metastatic BC (advanced BC).
Methods: KAMILLA (NCT01702571) is a single-arm, open-label, international, phase IIIb safety study of patients with HER2-positive advanced BC with progression after prior treatment with chemotherapy and a HER2-directed agent for MBC or within 6 months of completing adjuvant therapy.
Macitentan is an orally active dual endothelin receptor antagonist, which demonstrated a reduction of the risk of morbidity/mortality events in pulmonary arterial hypertension patients. This double-blind, randomized, placebo- and positive-controlled, four-way crossover thorough QTc study was designed to investigate the effects of therapeutic and supratherapeutic doses of macitentan on cardiac repolarization in healthy male and female subjects. Each subject received the following treatments: moxifloxacin 400 mg, macitentan 10 mg, macitentan 30 mg, and placebo.
View Article and Find Full Text PDFMacitentan is under development for the treatment of pulmonary arterial hypertension (PAH). Patients with PAH may suffer from comorbidities such as renal or hepatic impairment. Two prospective, single-center, open-label studies evaluated the pharmacokinetics of macitentan and its metabolites (pharmacologically active ACT-132577 and inactive ACT-373898) in healthy subjects and in subjects with mild, moderate, and severe hepatic impairment or severe renal function impairment (SRFI).
View Article and Find Full Text PDFDuring the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+).
View Article and Find Full Text PDFThe Ca2+ release channel ryanodine receptor 2 (RyR2) is required for excitation-contraction coupling in the heart and is also present in the brain. Mutations in RyR2 have been linked to exercise-induced sudden cardiac death (catecholaminergic polymorphic ventricular tachycardia [CPVT]). CPVT-associated RyR2 mutations result in "leaky" RyR2 channels due to the decreased binding of the calstabin2 (FKBP12.
View Article and Find Full Text PDFLong QT syndrome (LQTS) type 3 (LQT3), typified by the DeltaKPQ mutation (LQT3 mutation in which amino acid residues 1505 to 1507 [KPQ] are deleted), is caused by increased sodium entry during the action potential plateau resulting from mutation-altered inactivation of the Na(v)1.5 channel. Although rare, LQT3 is the most lethal of common LQTS variants.
View Article and Find Full Text PDFPhotochemical uncaging of bio-active molecules was introduced in 1977, but since then, there has been no substantial improvement in the properties of generic caging chromophores. We have developed a new chromophore, nitrodibenzofuran (NDBF) for ultra-efficient uncaging of second messengers inside cells. Photolysis of a NDBF derivative of EGTA (caged calcium) is about 16-160 times more efficient than photolysis of the most widely used caged compounds (the quantum yield of photolysis is 0.
View Article and Find Full Text PDFIn heart muscle the amplification and shaping of Ca(2+) signals governing contraction are orchestrated by recruiting a variable number of Ca(2+) sparks. Sparks reflect Ca(2+) release from the sarcoplasmic reticulum (SR) via Ca(2+) release channels (ryanodine receptors, RyRs). RyRs are activated by Ca(2+) influx via L-type Ca(2+) channels with a specific probability that may depend on regulatory mechanisms (e.
View Article and Find Full Text PDF