Inhibition of stearoyl-CoA desaturase (SCD) activity represents a potential novel mechanism for the treatment of metabolic disorders including obesity and type II diabetes. To circumvent skin and eye adverse events observed in rodents with systemically-distributed SCD inhibitors, our research efforts have been focused on the search for new and structurally diverse liver-targeted SCD inhibitors. This work has led to the discovery of novel, potent and structurally diverse liver-targeted bispyrrolidine SCD inhibitors.
View Article and Find Full Text PDFElevated levels of stearoyl-CoA desaturase (SCD) activity have been implicated in metabolic disorders such as obesity and type II diabetes. To circumvent skin and eye adverse events observed in rodents with systemically-distributed inhibitors, our research efforts have been focused on the search for new liver-targeting compounds. This work has led to the discovery of novel, potent and liver-selective acyclic linker SCD inhibitors.
View Article and Find Full Text PDFThe potential use of SCD inhibitors for the chronic treatment of diabetes and dyslipidemia has been limited by preclinical adverse events associated with inhibition of SCD in skin and eye tissues. To establish a therapeutic window, we embarked on designing liver-targeted SCD inhibitors by utilizing molecular recognition by liver-specific organic anion transporting polypeptides (OATPs). In doing so, we set out to target the SCD inhibitor to the organ believed to be responsible for the therapeutic efficacy (liver) while minimizing its exposure in the tissues associated with mechanism-based SCD depletion of essential lubricating lipids (skin and eye).
View Article and Find Full Text PDFAzaindole based structures were evaluated as DP1 receptor antagonists. This work has lead to the discovery of potent, selective and distinct DP1 receptor antagonists.
View Article and Find Full Text PDFThe discovery of the potent and selective prostaglandin D2 (PGD2) receptor (DP) antagonist [(3R)-4-(4-chlorobenzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (13) is presented. Initial lead antagonists 6 and 7 were found to be potent and selective DP antagonists (DP Ki = 2.0 nM for each); however, they both suffered from poor pharmacokinetic profiles, short half-lives and high clearance rates in rats.
View Article and Find Full Text PDFMetabolites of the potent DP antagonist, MK-0524, were generated using in vitro systems including hepatic microsomes and hepatocytes. Four metabolites (two hydroxylated diastereomers, a ketone and an acyl glucuronide) were characterized by LC-MS/MS and 1H NMR. Larger quantities of these metabolites were prepared by either organic synthesis or biosynthetically to be used as standards in other studies.
View Article and Find Full Text PDFTwo different series of very potent and selective EP(3) antagonists have been reported: a novel series of ortho-substituted cinnamic acids [Belley, M., Gallant, M., Roy, B.
View Article and Find Full Text PDFA novel indole series of PGD2 receptor (DP receptor) antagonists is presented. Optimization of this series led to the identification of potent and selective DP receptor antagonists. In particular, antagonists 35 and 36 were identified with Ki values of 2.
View Article and Find Full Text PDFA series of novel ortho-substituted cinnamic acids have been synthesized, and their binding activity and selectivity on the four prostaglandin E(2) receptors evaluated. Many of them are very potent and selective EP(3) antagonists (K(i) 3-10 nM), while compound 9 is a very good and selective EP(2) agonist (K(i) 8 nM). The biological profile of the EP(2) agonist 9 in vivo and the metabolic profile of selected EP(3) antagonists are also reported.
View Article and Find Full Text PDFPotent and selective ligands for the human EP3 prostanoid receptor are described. Triaryl compounds bearing an ortho-substituted propionic acid moiety were identified as potent EP3 antagonists based on the SAR described herein. The binding affinities of key compound on all eight human prostanoid receptors is reported.
View Article and Find Full Text PDF