Viruses
March 2023
COVID-19 has been considered a vascular disease, and inflammation, intravascular coagulation, and consequent thrombosis may be associated with endothelial dysfunction. These changes, in addition to hypoxia, may be responsible for pathological angiogenesis. This research investigated the impact of COVID-19 on vascular function by analyzing post-mortem lung samples from 24 COVID-19 patients, 10 H1N1pdm09 patients, and 11 controls.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2023
The new SARS-CoV-2 virus differs from the pandemic Influenza A virus H1N1 subtype (H1N1pmd09) how it induces a pro-inflammatory response in infected patients. This study aims to evaluate the involvement of SNPs and tissue expression of IL-17A and the neutrophils recruitment in lung samples from patients who died of severe forms of COVID-19 comparing to those who died by H1N1pdm09. Twenty lung samples from patients SARS-CoV-2 infected (COVID-19 group) and 10 lung samples from adults who died from a severe respiratory H1N1pdm09 infection (H1N1 group) were tested.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2020
Objective: Alveolar-capillary endothelial cells can be activated by severe acute respiratory syndrome coronavirus 2 infection leading to cytokine release. This could trigger endothelial dysfunction, pyroptosis, and thrombosis, which are the vascular changes, commonly referred to as coronavirus disease 2019 (COVID-19) endotheliopathy. Thus, this study aimed to identify tissue biomarkers associated with endothelial activation/dysfunction and the pyroptosis pathway in the lung samples of patients with COVID-19 and to compare them to pandemic influenza A virus H1N1 subtype 2009 and control cases.
View Article and Find Full Text PDF