Since second-order statistics-based methods rely heavily on Gaussianity assumption and fractional lower-order statistics-based methods depend on a priori knowledge of non-Gaussian noise, there remains a void in wideband bistatic multiple-input/multiple-output (MIMO) radar systems under impulsive noise. In this paper, a novel method based on Sigmoid transform was used to estimate target parameters, which do not need a priori knowledge of the noise in an impulsive noise environment. Firstly, a novel wideband ambiguity function, termed Sigmoid wideband ambiguity function (Sigmoid-WBAF), is proposed to estimate the Doppler stretch and time delay by searching the peak of the Sigmoid-WBAF.
View Article and Find Full Text PDFIn this paper, a novel method, that employs a fractional Fourier transform and a tuneable Sigmoid transform, is proposed, in order to estimate the Doppler stretch and time delay of wideband echoes for a linear frequency modulation (LFM) pulse radar in an alpha-stable distribution noise environment. Two novel functions, a tuneable Sigmoid fractional correlation function (TS-FC) and a tuneable Sigmoid fractional power spectrum density (TS-FPSD), are presented in this paper. The novel algorithm based on the TS-FPSD is then proposed to estimate the Doppler stretch and the time delay.
View Article and Find Full Text PDFFully polarimetric Synthetic Aperture Radar (polSAR) data analysis has wide applications for terrain and ground cover classification. The dynamics of surface and subsurface water events can lead to slope instability resulting in slough slides on earthen levees. Early detection of these anomalies by a remote sensing approach could save time versus direct assessment.
View Article and Find Full Text PDFWe investigate the relationship among several popular end-member extraction algorithms, including N-FINDR, the simplex growing algorithm (SGA), vertex component analysis (VCA), automatic target generation process (ATGP), and fully constrained least squares linear unmixing (FCLSLU). We analyze the fundamental equivalence in the searching criteria of the simplex volume maximization and pixel spectral signature similarity employed by these algorithms. We point out that their performance discrepancy comes mainly from the use of a dimensionality reduction process, a parallel or sequential implementation mode, or the imposition of certain constraints.
View Article and Find Full Text PDF