Publications by authors named "Nicolas Gross-Weege"

Carbon monoxide (CO) is a gaseous signaling molecule that modulates inflammation, cell survival, and recovery after myocardial infarction. However, handling and dosing of CO as a compressed gas are difficult. Here, light-triggerable and magnetic resonance imaging (MRI)-detectable CO release from dimanganese decacarbonyl (CORM-1) are demonstrated, and the development of CORM-1-loaded polymeric microbubbles (COMB) is described as an ultrasound (US)- and MRI-imageable drug delivery platform for triggerable and targeted CO therapy.

View Article and Find Full Text PDF

Background And Purpose: The restricted bore diameter of current simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) systems can be an impediment to achieving similar patient positioning during PET/MRI planning and radiotherapy. Our goal was to evaluate the B transmit (B ) uniformity, B efficiency, and specific absorption rate (SAR) of a novel radiofrequency (RF) body coil design, in which RF shielded PET detectors were integrated with the specific aim of enabling a wide-bore PET/MRI system.

Materials And Methods: We designed and constructed a wide-bore PET/MRI RF body coil to be integrated with a clinical MRI system.

View Article and Find Full Text PDF

Integration of magnetic resonance imaging (MRI) and positron emission tomography (PET) into a simultaneous device calls for adaptations of the radio frequency (RF) shielding concept. Conventional PET module housings fully encase the entire PET detector to reduce mutual interference. Excluding passive components, i.

View Article and Find Full Text PDF

Purpose: Magnetic resonance fingerprinting (MRF) offers rapid quantitative imaging but may be subject to confounding effects (CE) if these are not included in the model-based reconstruction. This study characterizes the influence of in-plane , slice profile and diffusion effects on T and T estimation in the female breast at 1.5T.

View Article and Find Full Text PDF

SPECT and PET are nuclear tomographic imaging modalities that visualize functional information based on the accumulation of radioactive tracer molecules. However, SPECT and PET lack anatomical information, which has motivated their combination with an anatomical imaging modality such as CT or MRI. This chapter begins with an overview over the fundamental physics of SPECT and PET followed by a presentation of the respective detector technologies, including detection requirements, principles and different detector concepts.

View Article and Find Full Text PDF

Purpose: Magnetic resonance fingerprinting (MRF) with spiral readout enables rapid quantification of tissue relaxation times. However, it is prone to blurring because of off-resonance effects. Hence, fat blurring into adjacent regions might prevent identification of small tumors by their quantitative T and T values.

View Article and Find Full Text PDF

The modification of biomaterials to comply with clinically employed monitoring techniques is a promising strategy to support clinical translation in regenerative medicine. Here, multimodal imaging of tissue-engineered vascular grafts (TEVG) was enabled by functionalizing the textile scaffold with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. The resulting MR-imageable grafts (iTEVG) were monitored non-invasively throughout their whole life-cycle, from initial quality control to longitudinal functional evaluation in an ovine model for up to 8 weeks.

View Article and Find Full Text PDF

The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) by using PET inserts in existing MRI scanners is an attractive approach. When designing the PET insert, mutual influences of both imaging modalities need to be minimized. The gradient magnetic fields induce eddy currents in all conductive components of the PET insert.

View Article and Find Full Text PDF

Purpose: In order to integrate electronic devices into a magnetic resonance imaging (MRI) scanner, shielding of the electronics with respect to the radio frequency (RF) transmit and receive system of the MRI scanner is required. Furthermore, MRI uses time-varying low-frequency magnetic fields for spatial encoding, i.e.

View Article and Find Full Text PDF

Purpose: In high-resolution positron emission tomography (PET), lightsharing elements are incorporated into typical detector stacks to read out scintillator arrays in which one scintillator element (crystal) is smaller than the size of the readout channel. In order to identify the hit crystal by means of the measured light distribution, a positioning algorithm is required. One commonly applied positioning algorithm uses the center of gravity (COG) of the measured light distribution.

View Article and Find Full Text PDF