Biol Rev Camb Philos Soc
December 2024
Understanding the origin and evolution of the mineralized skeleton is crucial for unravelling vertebrate history. However, several limitations hamper our progress. The first obstacle is the lack of uniformity and clarity in the literature for the definition of the tissues of concern, especially of enameloid(s) and enamel(s), resulting in ambiguous terminology and inconsistencies among studies.
View Article and Find Full Text PDFDevelopmental complexity stemming from the dynamic interplay between genetic and biomechanic factors canalizes the ways genotypes and phenotypes can change in evolution. As a paradigmatic system, we explore how changes in developmental factors generate typical tooth shape transitions. Since tooth development has mainly been researched in mammals, we contribute to a more general understanding by studying the development of tooth diversity in sharks.
View Article and Find Full Text PDFUnlabelled: The Smithian-Spathian boundary (SSB) crisis played a prominent role in resetting the evolution and diversity of the nekton (ammonoids and conodonts) during the Early Triassic recovery. The late Smithian nektonic crisis culminated at the SSB, ca. 2.
View Article and Find Full Text PDFCan we predict the evolutionary response of organisms to climate changes? The direction of greatest intraspecific phenotypic variance is thought to correspond to an '', i.e. a taxon's phenotype is expected to evolve along that general direction, if not constrained otherwise.
View Article and Find Full Text PDFShark populations that are distributed alongside a latitudinal gradient often display body size differences at sexual maturity and vicariance patterns related to their number of tooth files. Previous works have demonstrated that populations differ between the northeastern Atlantic Ocean and the Mediterranean Sea based on biological features and genetic analysis. In this study, we sample more than 3,000 teeth from 56 specimens caught incidentally off Roscoff and Banyuls-sur-Mer.
View Article and Find Full Text PDFThe mass extinction characterizing the Permian/Triassic boundary (PTB; ~ 252 Ma) corresponds to a major faunal shift between the Palaeozoic and the Modern evolutionary fauna. The temporal, spatial, environmental, and ecological dynamics of the associated biotic recovery remain highly debated, partly due to the scarce, or poorly-known, Early Triassic fossil record. Recently, an exceptionally complex ecosystem dated from immediately after the Smithian/Spathian boundary (~ 3 myr after the PTB) was reported: the Paris Biota (Idaho, USA).
View Article and Find Full Text PDFTeeth in sharks are shed and replaced throughout their lifetime. Morphological dental changes through ontogeny have been identified in several species and have been correlated with shifts in diet and the acquisition of sexual maturity. However, these changes were rarely quantified in detail along multiple ontogenetic stages, which makes it difficult to infer the developmental processes responsible for the observed plasticity.
View Article and Find Full Text PDFBackground: Many pathologies that modify the shell geometry and ornamentation of ammonoids are known from the fossil record. Since they may reflect the developmental response of the organism to a perturbation (usually a sublethal injury), their study is essential for exploring the developmental mechanisms of these extinct animals. Ammonoid pathologies are also useful to assess the value of some morphological characters used in taxonomy, as well as to improve phylogenetic reconstructions and evolutionary scenarios.
View Article and Find Full Text PDFIn the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.
View Article and Find Full Text PDFThe origin of jaws remains largely an enigma that is best addressed by studying fossil and living jawless vertebrates. Conodonts were eel-shaped jawless animals, whose vertebrate affinity is still disputed. The geometrical analysis of exceptional three-dimensionally preserved clusters of oro-pharyngeal elements of the Early Triassic Novispathodus, imaged using propagation phase-contrast X-ray synchrotron microtomography, suggests the presence of a pulley-shaped lingual cartilage similar to that of extant cyclostomes within the feeding apparatus of euconodonts ("true" conodonts).
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
June 2010
This article explores the close relationships between growth rate and allometries of molluscan shells. After reviewing the previous theoretical approaches devoted to the understanding of shell form and its morphogenesis, we present a free-form vector model which can simulate apertural shape changes and nonlinear allometries. Shell morphology is generated by iteratively adding a growth increment onto the last computed aperture.
View Article and Find Full Text PDFIn recent years, developmental plasticity has received increasing attention. Specifically, some studies highlighted a possible association between shell shape and growth rates in intertidal gastropods. We use a growth vector model to study how hypothetical growth processes could underlie developmental plasticity in molluscs.
View Article and Find Full Text PDFThe end-Permian mass extinction removed more than 80% of marine genera. Ammonoid cephalopods were among the organisms most affected by this crisis. The analysis of a global diversity data set of ammonoid genera covering about 106 million years centered on the Permian-Triassic boundary (PTB) shows that Triassic ammonoids actually reached levels of diversity higher than in the Permian less than 2 million years after the PTB.
View Article and Find Full Text PDFContrary to what is found in most of the existing scientific literature, where a specific frame is developed, the theory of speckle interferometry is (conveniently) presented here as a particular case of the more general theory of holographic interferometry. In addition to the intellectual benefit of dealing with a single unified theory, this brings about many advantages when it comes to discuss fundamental topics such as the three-dimensional evolution of the complex amplitude of the diffuse optical wavefronts, the degree of approximation of the leading formulas, the loss of fringe contrast, the decorrelation effects, the real influence of the terms generally neglected in out-of-focus regions. In the same way, the statistical properties of the speckle fields, usually treated as a separate subject matter, are also integrated in the theory, thus providing a comprehensive knowledge of the qualitative features of speckle interferometry methods, otherwise difficult to understand.
View Article and Find Full Text PDFDynamic phase shifting is a temporal phase unwrapping method, i.e., a method in which a sequence of speckle patterns is analyzed along the time axis.
View Article and Find Full Text PDF