Publications by authors named "Nicolas Gomez Fernandez"

Purpose: Air-vented ionization chambers have been the secondary standard for radiation dosimetry since the origins of radiation metrology. However, the feasibility of their use in ultra-high dose rate pulsed beams has been a matter of discussion, as large losses are caused by ion recombinations and no suitable theoretical model is available for their correction. The theories developed by Boag and his contemporaries since the 1950s, which have provided the standard ion recombination correction factor in clinical dosimetry, do not provide an accurate description when used under the limit conditions of ultra-high dose rates (UHDRs).

View Article and Find Full Text PDF

Purpose: To evaluate the response of the four smallest active volume thimble type ionization chambers commercially available (IBA-dosimetry RAZOR Nano Chamber, Standard Imaging Exradin A16, IBA-dosimetry CC01 and PTW T31022) when measuring SRS cone collimated Flattening Filter Free (FFF) fields.

Methods: We employed Monte Carlo simulation for calculating correction factors as defined in IAEA TRS-483. Monte Carlo simulation beam model and ion chamber geometry definitions were supported by an extensive set of measurements.

View Article and Find Full Text PDF

Background: Conventional air ionization chambers (ICs) exhibit ion recombination correction factors that deviate substantially from unity when irradiated with dose per pulse magnitudes higher than those used in conventional radiotherapy. This fact makes these devices unsuitable for the dosimetric characterization of beams in ultra-high dose per pulse as used for FLASH radiotherapy.

Purpose: We present the design, development, and characterization of an ultra-thin parallel plate IC that can be used in ultra-high dose rate (UHDR) deliveries with minimal recombination.

View Article and Find Full Text PDF

In this work we have created and commissioned a Monte Carlo model of 6FFF Varian TrueBeam linear accelerator using BEAMnrc. For this purpose we have experimentally measured the focal spot size and shape of three Varian TrueBeam treatment units in 6FFF modality with a slit collimator and several depth dose and lateral beam profiles in a water phantom. The Monte Carlo model of a 6FFF TrueBeam machine was implemented with a primary electron source commissioned as a 2D Gaussian with Full Width Half Maximum selected by comparison of simulated and measured narrow beam profiles.

View Article and Find Full Text PDF