Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E.
View Article and Find Full Text PDF, a Gram-negative zoonotic bacterium, is mainly a food-borne pathogen and the main cause of diarrhea in humans worldwide. The main reservoirs are found in poultry farms, but they are also found in wild birds. The development of antibiotic resistance in species raises concerns about the future of efficient therapies against this pathogen and revives the interest in bacteriophages as a useful therapy against bacterial infections.
View Article and Find Full Text PDF() is a plant pathogen causing significant losses in agriculture worldwide. Originating from America, this bacterium caused recent epidemics in southern Europe and is thus considered an emerging pathogen. As the European regulations do not authorize antibiotic treatment in plants, alternative treatments are urgently needed to control the spread of the pathogen and eventually to cure infected crops.
View Article and Find Full Text PDFBacteria synthesize a wide range of intracellular submicrometer-sized inorganic precipitates of diverse chemical compositions and structures, called biominerals. Their occurrences, functions and ultrastructures are not yet fully described despite great advances in our knowledge of microbial diversity. Here, we report bacteria inhabiting the sediments and water column of the permanently stratified ferruginous Lake Pavin, that have the peculiarity to biomineralize both intracellular magnetic particles and calcium carbonate granules.
View Article and Find Full Text PDFUnder the same selection pressures, two genetically divergent populations may evolve in parallel toward the same adaptive solutions. Here, we hypothesized that magnetotaxis (i.e.
View Article and Find Full Text PDFEcological and evolutionary processes involved in magnetotactic bacteria (MTB) adaptation to their environment have been a matter of debate for many years. Ongoing efforts for their characterization are progressively contributing to understand these processes, including the genetic and molecular mechanisms responsible for biomineralization. Despite numerous culture-independent MTB characterizations, essentially within the Proteobacteria phylum, only few species have been isolated in culture because of their complex growth conditions.
View Article and Find Full Text PDFA magnetotactic bacterium, designated strain BW-1, was isolated from a brackish spring in Death Valley National Park (California, USA) and cultivated in axenic culture. The Gram-negative cells of strain BW-1 are relatively large and rod-shaped and possess a single polar flagellum (monotrichous). This strain is the first magnetotactic bacterium isolated in axenic culture capable of producing greigite and/or magnetite nanocrystals aligned in one or more chains per cell.
View Article and Find Full Text PDFThe study of bacteriophages (viruses of bacteria) includes a variety of approaches, such as structural biology, genetics, ecology, and evolution, with increasingly important implications for therapeutic and industrial uses. Researchers working with phages in France have recently established a network to facilitate the exchange on complementary approaches, but also to engage new collaborations. Here, we provide a summary of the topics presented during the second meeting of the French Phage Network that took place in Marseille in November 2016.
View Article and Find Full Text PDFThe use of biosensors as sensitive and rapid alert systems is a promising perspective to monitor accidental or intentional environmental pollution, but their implementation in the field is limited by the lack of adapted inline water monitoring devices. We describe here the design and initial qualification of an analyzer prototype able to accommodate three types of biosensors based on entirely different methodologies (immunological, whole-cell, and bacteriophage biosensors), but whose responses rely on the emission of light. We developed a custom light detector and a reaction chamber compatible with the specificities of the three systems and resulting in statutory detection limits.
View Article and Find Full Text PDFWhole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2017
Whole-cell biosensors based on the reporter gene system can offer rapid detection of trace levels of organic or metallic compounds in water. They are well characterized in laboratory conditions, but their transfer into technological devices for the surveillance of water networks remains at a conceptual level. The development of a semi-autonomous inline water analyzer stumbles across the conservation of the bacterial biosensors over a period of time compatible with the autonomy requested by the end-user while maintaining a satisfactory sensitivity, specificity, and time response.
View Article and Find Full Text PDFThe fast development of sensitive molecular diagnostic tools is currently paving the way for a personalized medicine. A new class of ultrasensitive magnetic resonance imaging (MRI) T₂-contrast agents based on magnetosomes, magnetite nanocrystals biomineralized by magnetotactic bacteria, is proposed here. The contrast agents can be injected into the blood circulation and detected in the picomolar range.
View Article and Find Full Text PDFMany bacterial species contain multiple actin-like proteins tasked with the execution of crucial cell biological functions. MamK, an actin-like protein found in magnetotactic bacteria, is important in organizing magnetosome organelles into chains that are used for navigation along geomagnetic fields. MamK and numerous other magnetosome formation factors are encoded by a genetic island termed the magnetosome island.
View Article and Find Full Text PDFMagnetotactic bacteria (MTB) can swim along Earth's magnetic field lines, thanks to the alignment of dedicated cytoplasmic organelles. These organelles, termed magnetosomes, are proteolipidic vesicles filled by a 35-120 nm crystal of either magnetite or greigite. The formation and alignment of magnetosomes are mediated by a group of specific genes, the mam genes, encoding the magnetosome-associated proteins.
View Article and Find Full Text PDFMagnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed.
View Article and Find Full Text PDFEnviron Microbiol
October 2013
Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite.
View Article and Find Full Text PDFHorizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria.
View Article and Find Full Text PDFMagnetotactic bacteria consist of a group of taxonomically, physiologically and morphologically diverse prokaryotes, with the singular ability to align with geomagnetic field lines, a phenomenon referred to as magnetotaxis. This magnetotactic property is due to the presence of iron-rich crystals embedded in lipidic vesicles forming an organelle called the magnetosome. Magnetosomes are composed of single-magnetic-domain nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4)) embedded in biological membranes, thereby forming a prokaryotic organelle.
View Article and Find Full Text PDFEnzymes are versatile catalysts in laboratories and on an industrial scale; improving their immobilization would be beneficial to broadening their applicability and ensuring their (re)use. Lipid-coated nano-magnets produced by magnetotactic bacteria are suitable for a universally applicable single-step method of enzyme immobilization. By genetically functionalizing the membrane surrounding these magnetite particles with a phosphohydrolase, we engineered an easy-to-purify, robust and recyclable biocatalyst to degrade ethyl-paraoxon, a commonly used pesticide.
View Article and Find Full Text PDFPhotosynthetic membranes accommodate densely packed light-harvesting complexes which absorb light and convey excitation to the reaction center (RC). The relationship between the fluorescence yield (phi) and the fraction (x) of closed RCs is informative about the probability for an excitation reaching a closed RC to be redirected to another RC. In this work, we have examined in this respect membranes from various bacteria and searched for a correlation with the arrangement of the light-harvesting complexes as known from atomic force or electron microscopies.
View Article and Find Full Text PDFMagnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour.
View Article and Find Full Text PDFThe competition between the P(+)Q(A)(-) --> PQ(A) charge recombination (P, bacteriochlorophyll pair acting as primary photochemical electron donor) and the electron transfer to the secondary quinone acceptor Q(A)(-)Q(B) --> Q(A)Q(B)(-) (Q(A) and Q(B), primary and secondary electron accepting quinones) was investigated in chromatophores of Rb. capsulatus, varying the temperature down to -65 degrees C. The analysis of the flash-induced pattern for the formation of P(+)Q(A)Q(B)(-) shows that the diminished yield, when lowering the temperature, is not due to a homogeneous slowing of the rate constant k(AB) of the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer but to a distribution of conformations that modulate the electron transfer rate over more than 3 orders of magnitude.
View Article and Find Full Text PDFThe crystal structure of Escherichia coli nitrate reductase A (NarGHI) in complex with pentachlorophenol has been determined to 2.0 A of resolution. We have shown that pentachlorophenol is a potent inhibitor of quinol:nitrate oxidoreductase activity and that it also perturbs the EPR spectrum of one of the hemes located in the membrane anchoring subunit (NarI).
View Article and Find Full Text PDFIt is no surprise that the catalytic activity of electron-transport enzymes may be optimised at certain electrochemical potentials in ways that are analogous to observations of pH-rate optima. This property is observed clearly in experiments in which an enzyme is adsorbed on an electrode surface which can supply or receive electrons rapidly and in a highly controlled manner. In such a way, the rate of catalysis can be measured accurately as a function of the potential (driving force) that is applied.
View Article and Find Full Text PDF