Social insects have developed a broad diversity of nesting and foraging strategies. One of these, inquilinism, occurs when one species (the inquiline) inhabits the nest built and occupied by another species (the host). Obligatory inquilines must overcome strong constraints upon colony foundation and development, due to limited availability of host colonies.
View Article and Find Full Text PDFPhotonic lantern (PL) spatial multiplexers show great promise for a range of applications, such as future high-capacity mode division multiplexing (MDM) optical communication networks and free-space optical communication. They enable efficient conversion between multiple single-mode (SM) sources and a multimode (MM) waveguide of the same dimension. PL multiplexers operate by facilitating adiabatic transitions between the SM arrayed space and the single MM space.
View Article and Find Full Text PDFStable lasers play a significant role in precision optical systems where an electro-optic laser frequency stabilization system, such as the Pound-Drever-Hall technique, measures laser frequency and actively stabilizes it by comparing it to a frequency reference. Despite their excellent performance, there has been a trade-off between complexity, scalability, and noise measurement sensitivity. Here, we propose and experimentally demonstrate a modulation-free laser stabilization method using an integrated cavity-coupled Mach-Zehnder interferometer as a frequency noise discriminator.
View Article and Find Full Text PDFElectrochemical aptamer-based (E-AB) biosensors have demonstrated capabilities in monitoring molecules directly in undiluted complex matrices and in the body with the hopes of addressing personalized medicine challenges. This sensing platform relies on an electrode-bound, redox-reporter-modified aptamer. The electrochemical signal is thought to originate from the aptamer undergoing a binding-induced conformational change capable of moving the redox reporter closer to the electrode surface.
View Article and Find Full Text PDFSignificance: This study investigates how a new smartphone scanning technology compares with established online and storefront vendors in providing remote measurement and adjustment of prescription eyeglasses.
Purpose: This study aimed to evaluate a new technology for ordering prescription eyeglasses online.
Methods: Thirty participants with 2.
Lysophosphatidic acids (LPA) are key biomarkers for several physiological processes, the monitoring of which can provide insights into the host's health. Common lab-based techniques for their detection are cumbersome, expensive, and necessitate specialized personnel to operate. LPA-sensitive fluorescent probes have been described, albeit for nonaqueous conditions, which impedes their use in biological matrices.
View Article and Find Full Text PDFIntegrated photonic circuits are created as a stable and small form factor analogue of fiber-based optical systems, from wavelength-division multiplication transceivers to more recent mode-division multiplexing components. Silicon nanowire waveguides guide the light in a way that single and few mode fibers define the direction of signal flow. Beyond communication tasks, on-chip cascaded interferometers and photonic meshes are also sought for optical computing and advanced signal processing technology.
View Article and Find Full Text PDFData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core.
View Article and Find Full Text PDFIn this work, we demonstrate a four-core multicore fiber photonic lantern tip/tilt wavefront sensor. To diagnose the low-order Zernike aberrations, we exploit the ability of the photonic lantern to encode the characteristics of a complex incoming beam at the multimode facet of the sensor to intensity distributions at the multicore fiber output. Here, we provide a comprehensive numerical analysis capable of predicting the performance of fabricated devices and experimentally demonstrate the concept.
View Article and Find Full Text PDFThe local variations of group and phase propagation delays induced by bending and twisting a coupled core three-core fiber are experimentally characterized, for the first time, to the best of our knowledge, along the fiber length, with millimeter-scale spatial resolution. The measurements are performed by means of spectral correlation analysis on the fiber's Rayleigh backscattered signal, enabling for a distributed measurement of the perturbation effects along the fiber length. A mathematical model validating the experimental results is also reported.
View Article and Find Full Text PDFWe experimentally demonstrate a net capacity per wavelength of 1.23 Tb/s with 30 GBaud 16-ary quadrature amplitude modulation (16-QAM) mode-division multiplexing (MDM) signals over a single silicon-on-insulator (SOI) multimode waveguide for optical interconnects employing $11 \times 11$ multiple-in-multiple-out (MIMO) digital signal processing. In order to simplify the receiver architecture for coherent optical interconnects, we further propose and evaluate an on-chip self-homodyne coherent detection (SHCD) scheme.
View Article and Find Full Text PDFLossless linear wave propagation is symmetric in time, a principle which can be used to create time reversed waves. Such waves are special "pre-scattered" spatiotemporal fields, which propagate through a complex medium as if observing a scattering process in reverse, entering the medium as a complicated spatiotemporal field and arriving after propagation as a desired target field, such as a spatiotemporal focus. Time reversed waves have previously been demonstrated for relatively low frequency phenomena such as acoustics, water waves and microwaves.
View Article and Find Full Text PDFPhase retrieval (PR) receivers can reconstruct the full electrical field of the signal using only intensity measurements without any optical carrier. In this Letter, we investigate the requirement of digital upsampling and receiver bandwidth of the PR receiver based on alternative projection employing a dispersive element. An iteration scheme averaging the interleaved upsampled symbols to maintain two samples per symbol for the estimated complex-valued signal is proposed and experimentally demonstrated with fast algorithm convergence.
View Article and Find Full Text PDFOptical vector network analyzers (OVNAs) based on swept-wavelength interferometry are applied widely in optical metrology and sensing to measure the complex transfer functions of optical components, devices, and fibers. Phase noise from laser sweep nonlinearities degrades the measurement quality as the distance increases and limits the usage of the OVNA in characterizing systems with long impulse responses as required in space-division multiplexing links with a high mode count or in the presence of large modal differential group delay (DGD). In this Letter, we use a densely distributed broadband ultra-weak fiber Bragg grating array to directly measure the distortion due to phase noise at a 5-m increment up to 400 m and use this measured data to directly eliminate the distortion.
View Article and Find Full Text PDFMachine learning (ML) has pervaded most areas of protein engineering, including stability and stereoselectivity. Using limonene epoxide hydrolase as the model enzyme and innov'SAR as the ML platform, comprising a digital signal process, we achieved high protein robustness that can resist unfolding with concomitant detrimental aggregation. Fourier transform (FT) allows us to take into account the order of the protein sequence and the nonlinear interactions between positions, and thus to grasp epistatic phenomena.
View Article and Find Full Text PDFThe alteration of photophysical properties of fluorophores in the vicinity of a metallic nanostructure, a phenomenon termed plasmon- or metal-enhanced fluorescence (MEF), has been investigated extensively and used in a variety of proof-of-concept demonstrations over the years. A particularly active area of development in this regard has been the design of nanostructures where fluorophore and metallic core are held in a stable geometry that imparts improved luminosity and photostability to a plethora of organic fluorophores. This minireview presents an overview of MEF-based concentric core-shell sensors developed in the past few years.
View Article and Find Full Text PDFPhase-retrieval (PR) receivers can reconstruct complex-valued signals using only direct detection without the use of any optical carriers. We propose and demonstrate two PR receiver solutions with faster and better convergence. First, we demonstrate a PR receiver based on parallel alternative projections that are produced by propagating the signal through an array of dispersive elements of increasing length followed by direct detection.
View Article and Find Full Text PDFWe demonstrate secure optical coherent communications employing low-coherence matched detection based on the randomness of amplified spontaneous emission (ASE) noise. Two-level physical-layer optical encryption is achieved through temporal and spectral coding over a broadband ASE source. An ASE-carried signal and unmodulated carrier are polarization multiplexed, transmitted over a same single-mode fiber (SMF), and separated with the aid of polarization tracking before having matched detection at the receiving side.
View Article and Find Full Text PDFThe work aiming to unravel the correlation between protein sequence and function in the absence of structural information can be highly rewarding. We present a new way of considering descriptors from the amino acids index database for modeling and predicting the fitness value of a polypeptide chain. This approach includes the following steps: (i) Calculating Q elementary numerical sequences (Ele_SEQ) depending on the encoding of the amino acid residues, (ii) determining an extended numerical sequence (Ext_SEQ) by concatenating the Q elementary numerical sequences, wherein at least one elementary numerical sequence is a protein spectrum obtained by applying fast Fourier transformation (FFT), and (iii) predicting a value of fitness for polypeptide variants (train and/or validation set).
View Article and Find Full Text PDFEnzymes are biological catalysts with many industrial applications, but natural enzymes are usually unsuitable for industrial processes because they are not optimized for the process conditions. The properties of enzymes can be improved by directed evolution, which involves multiple rounds of mutagenesis and screening. By using mathematical models to predict the structure-activity relationship of an enzyme, and by defining the optimal combination of mutations in silico, we can significantly reduce the number of bench experiments needed, and hence the time and investment required to develop an optimized product.
View Article and Find Full Text PDF