The morphology of sub-monolayer sexithiophene films has been investigated in situ and ex situ as a function of the substrate temperature of deposition. In this thickness range, monolayer terraces formed of edge-on molecules, i.e.
View Article and Find Full Text PDFBimodal atomic force microscopy can provide high-resolution images of polymers. In the bimodal operation mode, two eigenmodes of the cantilever are driven simultaneously. When examining polymers, an effective mechanical contact is often required between the tip and the sample to obtain compositional contrast, so particular emphasis was placed on the repulsive regime of dynamic force microscopy.
View Article and Find Full Text PDFThere is a need for noninvasive techniques for simultaneous imaging of the stress and vibration mode shapes of nanomechanical systems in the fields of scanning probe microscopy, nanomechanical biological and chemical sensors and the semiconductor industry. Here we show a novel technique that combines a scanning laser, the beam deflection method and digital multifrequency excitation and analysis for simultaneous imaging of the static out-of-plane displacement and the shape of five vibration modes of nanomechanical systems. The out-of-plane resolution is at least 100 pm Hz⁻¹/² and the lateral resolution, which is determined by the laser spot size, is 1-1.
View Article and Find Full Text PDFWe perform a combined experimental and theoretical approach to establish the atomistic origin of energy dissipation occurring while imaging a molecular surface with an amplitude modulation atomic force microscope. We show that the energy transferred by a single nano-asperity to a sexithiophene monolayer is about 0.15 eV/cycle.
View Article and Find Full Text PDFThe capability of atomic force microscopes (AFM) to generate atomic or nanoscale resolution images of surfaces has deeply transformed the study of materials. However, high resolution imaging of biological systems has proved more difficult than obtaining atomic resolution images of crystalline surfaces. In many cases, the forces exerted by the tip on the molecules (1-10 nN) either displace them laterally or break the noncovalent bonds that hold the biomolecules together.
View Article and Find Full Text PDFBy recording the phase angle difference between the excitation force and the tip response in amplitude modulation AFM it is possible to image compositional variations in heterogeneous samples. In this contribution we address some of the experimental issues relevant to perform phase contrast imaging measurements. Specifically, we study the dependence of the phase shift on the tip-surface separation, interaction regime, cantilever parameters, free amplitude and tip-surface dissipative processes.
View Article and Find Full Text PDF