High Angular Resolution Diffusion Imaging (HARDI) is a type of brain imaging that collects a very large amount of data, and if many subjects are considered then it amounts to a big data framework (e.g., the human connectome project has 20 Terabytes of data).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Diffusion MRI allows the obtaining of an approximation of the water displacement's probability density function (PDF) and orientation distribution function (ODF). Examples of techniques used in obtaining these distributions being q-space imaging (QSI), and q-ball imaging (QBI), respectively. Shannon information quantifies the discriminative power of a symbol based on its probability.
View Article and Find Full Text PDFOCD has been hypothesized to involve the failures in both cognitive and behavioral inhibitory processes. There is evidence that the hyperactivation of cortical-subcortical pathways may be involved in the failure of these inhibitory systems associated with OCD. Despite this consensus on the role of frontal-subcortical pathways in OCD, recent studies have been showing that brain regions other than the frontal-subcortical loops may be needed to understand the different cognitive and emotional deficits in OCD.
View Article and Find Full Text PDFPurpose: To use MRI diffusion-tensor tracking (DTT) to test for the presence of unknown neuronal fiber pathways interconnecting the mid-fusiform cortex and anteromedial temporal lobe in humans. Such pathways are hypothesized to exist because these regions coactivate in functional MRI (fMRI) studies of emotion-valued faces and words, suggesting a functional link that could be mediated by neuronal connections.
Materials And Methods: A total of 15 normal human subjects were studied using unbiased DTT approaches designed for probing unknown pathways, including whole-brain seeding and large pathway-selection volumes.
In q-space diffusion NMR, the probability P(r,td) of a molecule having a displacement r in a diffusion time td is obtained under the assumption that the diffusion-encoding gradient g has an infinitesimal duration. However, this assumption may not always hold, particularly in human MRI where the diffusion-encoding gradient duration delta is typically of the same order of magnitude as the time offset Delta between encoding gradients. In this case, finite-delta effects complicate the interpretation of displacement probabilities measured in q-space MRI, and the form by which the signal intensity relates to them.
View Article and Find Full Text PDF