Publications by authors named "Nicolas Etique"

Background: LRP-1 is a multifunctional scavenger receptor belonging to the LDLR family. Due to its capacity to control pericellular levels of various growth factors and proteases, LRP-1 plays a crucial role in membrane proteome dynamics, which appears decisive for tumor progression.

Methods: LRP-1 involvement in a TNBC model was assessed using an RNA interference strategy in MDA-MB-231 cells.

View Article and Find Full Text PDF

Lumican, a small leucine-rich proteoglycan (SLRP) of the extracellular matrix (ECM), displays anti-tumor properties through its direct interaction with MMP-14. Lumican-derived peptides, such as lumcorin (17 amino acids) or L9M (10 amino acids), are able to inhibit the proteolytic activity of MMP-14 and melanoma progression. This work aimed to visualize the interactions of lumican-derived peptides and MMP-14.

View Article and Find Full Text PDF

The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes.

View Article and Find Full Text PDF

Further improvements in Photodynamic therapy (PDT) necessitate that the dye targets more selectively tumour tissues or neovascularization than healthy cells. Different enzymes such as matrix metalloproteinases (MMPs) are overexpressed in tumour areas. Among these MMPs, gelatinases (MMP-2 and MMP-9) and its activator MMP-14 are known to play a key role in tumour angiogenesis and the growth of many cancers such as glioblastoma multiforme (GBM), an aggressive malignant tumour of the brain.

View Article and Find Full Text PDF

In this study, we investigated the effect of [N-(5-chloro-2-hydroxyphenyl)-l-aspartato] chlorogallate (GS2), a new water soluble gallium complex, on cell invasion and on the expression and activity of matrix metalloproteinases (MMPs) in human metastatic HT-1080 fibrosarcoma and MDA-MB 231 breast carcinoma cells. The effect on cell invasion was studied using a modified Boyden chamber coated with a type-I collagen. We analyzed the effect of GS2 on MMP-2, MMP-9, and MMP-14 via zymography and enzymatic assay using high affinity fluorogenic substrates.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers studied how TIMP-1 changes shape when it binds to LRP-1, finding important movement within the protein's structure that affects its function.
  • * Mutations in specific regions of TIMP-1 don't affect its ability to inhibit enzymes but do hinder its impact on neurite outgrowth and prevent endocytosis despite still binding to LRP-1.
View Article and Find Full Text PDF

Tissue inhibitor of metalloproteinases-1 (TIMP-1) regulates the extracellular matrix turnover by inhibiting the proteolytic activity of matrix metalloproteinases (MMPs). TIMP-1 also displays MMP-independent activities that influence the behavior of various cell types including neuronal plasticity, but the underlying molecular mechanisms remain mostly unknown. The trans-membrane receptor low-density lipoprotein receptor-related protein-1 (LRP-1) consists of a large extracellular chain with distinct ligand-binding domains that interact with numerous ligands including TIMP-2 and TIMP-3 and a short transmembrane chain with intracellular motifs that allow endocytosis and confer signaling properties to LRP-1.

View Article and Find Full Text PDF
Article Synopsis
  • LRP-1 is a large receptor that plays a key role in endocytosis and signaling by binding over 35 different ligands.
  • The paper focuses on matrix proteinases, which are mainly serine proteinases involved in breaking down the extracellular matrix, including plasminogen activators and matrix metalloproteinases (MMPs).
  • LRP-1 helps regulate the levels of these matrix proteinases by clearing them from the cell, either alone or when they are bound to inhibitors, influencing both cellular and molecular processes.
View Article and Find Full Text PDF

TIMP-1, a well-known MMP inhibitor, displays other biological activities such as cell survival, proliferation and differentiation in hematopoietic cells. In this report, we investigated the role of the Src-related kinase Lyn in TIMP-1 induced UT-7 erythroleukemic cell survival. We showed that (i) tyrosine 507 of Lyn was dephosphorylated and Lyn kinase activity enhanced by TIMP-1, (ii) Lyn silencing suppressed TIMP-1 anti-apoptotic activity and (iii) Lyn was activated upstream the JAK2/PI 3-kinase/Akt pathway.

View Article and Find Full Text PDF

Alcohol consumption increases the risk of breast cancer but the underlying mechanisms are not well understood. We have shown previously that ethanol activates ER signalling pathway in a cAMP/PKA-mediated ligand-independent manner. Since the activation of A2A adenosine receptor (A2AAR) by ethanol has been reported in other cell types, here we tested if cross-talk between this Gs-coupled receptor and ERalpha could be involved in ethanol effects in breast cancer cells.

View Article and Find Full Text PDF

Alcohol consumption is an increased risk factor for hormone-dependent breast cancer but the underlying molecular bases are unknown. Several studies suggest that ethanol could activate the estrogen signaling pathway. We have performed an in vitro study in order to investigate the molecular players involved in this phenomenon.

View Article and Find Full Text PDF

Alcohol consumption is a well-established risk factor for hormone-dependent breast cancer. In vitro studies performed to understand the mechanisms by which ethanol acts on breast cancer cells have shown that this compound stimulates both proliferation and migration. In the present study, we show by gelatin zymography that, when exposed to ethanol, MCF-7 human breast cancer cells display a higher amount of active metalloproteinases (MMP) 2 and 9 in their culture medium.

View Article and Find Full Text PDF

Alcohol consumption is known to be an increased risk factor for breast cancer, but the underlying molecular mechanisms are not well understood. We have recently shown that the exposure of MCF-7 breast cancer cells to 0.1% ethanol enhanced their proliferation and increased their content in both estrogen receptor-alpha (ERalpha) and aromatase.

View Article and Find Full Text PDF

It is well documented that alcohol is associated with an increased risk factor for breast carcinogenesis although the underlying mechanisms are not clearly understood. It has been reported that in vitro, the culture of estrogen receptor (ER) expressing breast cancer cells in ethanol containing medium was associated with an increase in the proliferation rate, in the ERalpha content as well as in ER transcriptional activity. Since these changes are not observed in ER negative breast cancer cells, and since alcohol intake has been associated to an increased level of circulating estrogens, we have postulated that aromatase expression could be increased following ethanol exposure.

View Article and Find Full Text PDF