A new method is proposed to numerically extract the diffusivity of a (typically nonlinear) diffusion equation from underlying stochastic particle systems. The proposed strategy requires the system to be in local equilibrium and have Gaussian fluctuations but it is otherwise allowed to undergo arbitrary out-of-equilibrium evolutions. This could be potentially relevant for particle data obtained from experimental applications.
View Article and Find Full Text PDFTwo-species condensing zero range processes (ZRPs) are interacting particle systems with two species of particles and zero range interaction exhibiting phase separation outside a domain of sub-critical densities. We prove the hydrodynamic limit of nearest neighbour mean zero two-species condensing ZRP with bounded local jump rate for sub-critical initial profiles, i.e.
View Article and Find Full Text PDFIn recent work we uncovered intriguing connections between Otto's characterization of diffusion as an entropic gradient flow on the one hand and large-deviation principles describing the microscopic picture (Brownian motion) on the other. In this paper, we sketch this connection, show how it generalizes to a wider class of systems and comment on consequences and implications. Specifically, we connect macroscopic gradient flows with large-deviation principles, and point out the potential of a bigger picture emerging: we indicate that, in some non-equilibrium situations, entropies and thermodynamic free energies can be derived via large-deviation principles.
View Article and Find Full Text PDF