The small intestine is well known for the function of its nutrient-absorbing enterocytes; yet equally critical for the maintenance of homeostasis is a diverse set of secretory cells, all of which are presumed to differentiate from the same intestinal stem cell. Despite major roles in intestinal function and health, understanding how the full spectrum of secretory cell types arises remains a longstanding challenge, largely due to their comparative rarity. Here, we investigate the fate specification of a rare and distinct population of small intestinal epithelial cells found in rats and humans but not mice: C FTR Hi gh E xpressers (CHEs).
View Article and Find Full Text PDFPaternal chromatin undergoes extensive structural and epigenetic changes during mammalian spermatogenesis, producing sperm with an epigenome optimized for the transition to embryogenesis. Lysine demethylase 6a (KDM6A, also called UTX) promotes gene activation in part via demethylation of H3K27me3, a developmentally important repressive modification abundant throughout the epigenome of spermatogenic cells and sperm. We previously demonstrated increased cancer risk in genetically wild-type mice derived from a paternal germ line lacking Kdm6a (Kdm6a cKO), indicating a role for KDM6A in regulating heritable epigenetic states.
View Article and Find Full Text PDFInvestigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development.
View Article and Find Full Text PDF