J Funct Biomater
December 2023
Dental surgery needs a biocompatible implant design that can ensure both osseointegration and soft tissue integration. This study aims to investigate the behavior of a hydroxyapatite-based coating, specifically designed to be deposited onto a zirconia substrate that was intentionally made porous through additive manufacturing for the purpose of reducing the cost of material. Layers were made via sol-gel dip coating by immersing the porous substrates into solutions of hydroxyapatite that were mixed with polyethyleneimine to improve the adhesion of hydroxyapatite to the substrate.
View Article and Find Full Text PDFThe impact of the immersion in water on the morphology and the thermomechanical properties of a biocomposite made of a matrix of poly (lactic acid) (PLA) modified with an ethylene acrylate toughening agent, and reinforced with miscanthus fibers, has been investigated. Whereas no evidence of hydrolytic degradation has been found, the mechanical properties of the biocomposite have been weakened by the immersion. Scanning electron microscopy (SEM) pictures reveal that the water-induced degradation is mainly driven by the cracking of the fiber/matrix interface, suggesting that the cohesiveness is a preponderant factor to consider for the control of the biocomposite decomposition in aqueous environments.
View Article and Find Full Text PDFIn this paper, the calorimetric response of the amorphous phase was examined in hybrid nanocomposites which were prepared thanks to a facile synthetic route, by adding reduced graphene oxide (rGO), Cloisite 30B (C30B), or multiwalled carbon nanotubes (MWCNT) to lignin-filled poly(lactic acid) (PLA). The dispersion of both lignin and nanofillers was successful, according to a field-emission scanning-electron microscopy (FESEM) analysis. Lignin alone essentially acted as a crystallization retardant for PLA, and the nanocomposites shared this feature, except when MWCNT was used as nanofiller.
View Article and Find Full Text PDFBiodegradable PLA/PBSA multinanolayer nanocomposites were obtained from semi-crystalline poly(butylene succinate--butylene adipate) (PBSA) nanolayers filled with nanoclays and confined against amorphous poly(lactic acid) (PLA) nanolayers in a continuous manner by applying an innovative coextrusion technology. The cloisite 30B (C30B) filler incorporation in nanolayers was considered to be an improvement of barrier properties of the multilayer films additional to the confinement effect resulting to forced assembly during the multilayer coextrusion process. 2049-layer films of ~300 µm thick were processed containing loaded PBSA nanolayers of ~200 nm, which presented certain homogeneity and were mostly continuous for the 80/20 wt% PLA/PBSA composition.
View Article and Find Full Text PDFFast scanning calorimetry (FSC) experiments were performed to investigate physical aging in amorphous and semi-crystalline poly(l-lactic acid)s (PLLAs) that were thermally crystallized under conditions leading to the α'- or α-crystalline form, and either favouring or inhibiting the development of a rigid amorphous fraction (RAF). The enthalpy of recovery was calculated after two procedures of rescaling to the content of the whole amorphous phase and also to the only content of the mobile amorphous fraction (MAF), which helped in clarifying the contribution of the RAF. From the dependence of the structural relaxation rate on the aging temperature, two regimes were evidenced for all samples.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The barrier properties of poly(l-lactide) (PLLA) were investigated in multinanolayer systems, probing the effect of confinement, the compatibility between the confining and the confined polymer, crystal orientation, and amorphous phase properties. The multilayer coextrusion process was used to confine PLLA between two amorphous polymers (polystyrene, PS; and polycarbonate, PC), which have different chemical affinities with PLLA. Confined PLLA layers of approximately 20 nm thickness were obtained.
View Article and Find Full Text PDFThe kinetic fragility of a glass-forming liquid is an important parameter to describe its molecular mobility. In most polymers, the kinetic fragility index obtained from the glassy state by thermally stimulated depolarization current is lower than the one determined in the liquid-like state by dielectric relaxation spectroscopy, as shown in this work for neat polylactide (PLA). When PLA is plasticized to different extents, the fragility calculated in the liquid-like state progressively decreases, until approaching the value of fragility calculated from the glass, which on the other hand remains constant with plasticization.
View Article and Find Full Text PDFAdvanced fibers revolutionized structural materials in the second half of the 20th century. However, all high-strength fibers developed to date are brittle. Recently, pioneering simultaneous ultrahigh strength and toughness were discovered in fine (<250 nm) individual electrospun polymer nanofibers (NFs).
View Article and Find Full Text PDFMultilayer coextrusion processing was applied to produce 2049-layer film of poly(butylene succinate-co-butylene adipate) (PBSA) confined against poly(lactic acid) (PLA) using forced assembly, where the PBSA layer thickness was about 60 nm. This unique technology allowed to process semicrystalline PBSA as confined polymer and amorphous PLA as confining polymer in a continuous manner. The continuity of PBSA layers within the 80/20 wt % PLA/PBSA layered films was clearly evidenced by atomic force microscopy (AFM).
View Article and Find Full Text PDFCrystallization is among the easiest ways to improve polymer barrier properties because of the tortuosity increase within the material and the strong coupling between amorphous and crystalline phases. In this work, poly(lactic acid) (PLA) films have undergone α' thermal crystallization or different drawing processes. Although no effect of α' thermal crystallization on water permeability is observed, the drawing processes lead to an enhancement of the PLA barrier properties.
View Article and Find Full Text PDF