Publications by authors named "Nicolas De Neuter"

Antigen recognition through the T cell receptor (TCR) αβ heterodimer is one of the primary determinants of the adaptive immune response. Vaccines activate naïve T cells with high specificity to expand and differentiate into memory T cells. However, antigen-specific memory CD4 T cells exist in unexposed antigen-naïve hosts.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a hematological malignancy characterized by plasma cells' uncontrolled growth. The major barrier in treating MM is the occurrence of primary and acquired therapy resistance to anticancer drugs Often, this therapy resistance is associated with constitutive hyperactivation of tyrosine kinase signaling. Novel covalent kinase inhibitors, such as the clinically approved BTK inhibitor ibrutinib (IBR) and the preclinical phytochemical withaferin A (WA), have, therefore, gained pharmaceutical interest.

View Article and Find Full Text PDF

The prediction of epitope recognition by T-cell receptors (TCRs) has seen many advancements in recent years, with several methods now available that can predict recognition for a specific set of epitopes. However, the generic case of evaluating all possible TCR-epitope pairs remains challenging, mainly due to the high diversity of the interacting sequences and the limited amount of currently available training data. In this work, we provide an overview of the current state of this unsolved problem.

View Article and Find Full Text PDF

Voltage-gated potassium (Kv) channels display several types of inactivation processes, including N-, C-, and U-types. C-type inactivation is attributed to a nonconductive conformation of the selectivity filter (SF). It has been proposed that the activation gate and the channel's SF are allosterically coupled because the conformational changes of the former affect the structure of the latter and vice versa.

View Article and Find Full Text PDF

Thanks to the recommendation of a combined Measles/Mumps/Rubella (MMR) vaccine, like Priorix®, these childhood diseases are less common now. This is beneficial to limit the spread of these diseases and work towards their elimination. However, the measles, mumps and rubella antibody titers show a large variability in short- and long-term immunity.

View Article and Find Full Text PDF

Recognition of cancer epitopes by T cells is fundamental for the activation of targeted antitumor responses. As such, the identification and study of epitope-specific T cells has been instrumental in our understanding of cancer immunology and the development of personalized immunotherapies. To facilitate the study of T-cell epitope specificity, we developed a prediction tool, TCRex, that can identify epitope-specific T-cell receptors (TCRs) directly from TCR repertoire data and perform epitope-specificity enrichment analyses.

View Article and Find Full Text PDF

High-throughput T cell receptor (TCR) sequencing allows the characterization of an individual's TCR repertoire and directly queries their immune state. However, it remains a non-trivial task to couple these sequenced TCRs to their antigenic targets. In this paper, we present a novel strategy to annotate full TCR sequence repertoires with their epitope specificities.

View Article and Find Full Text PDF

Background: Meningitis can be caused by several viruses and bacteria. Identifying the causative pathogen as quickly as possible is crucial to initiate the most optimal therapy, as acute bacterial meningitis is associated with a significant morbidity and mortality. Bacterial meningitis requires antibiotics, as opposed to enteroviral meningitis, which only requires supportive therapy.

View Article and Find Full Text PDF

Motivation: The T-cell receptor (TCR) is responsible for recognizing epitopes presented on cell surfaces. Linking TCR sequences to their ability to target specific epitopes is currently an unsolved problem, yet one of great interest. Indeed, it is currently unknown how dissimilar TCR sequences can be before they no longer bind the same epitope.

View Article and Find Full Text PDF
Article Synopsis
  • The WHO recommends hepatitis B vaccination from infancy due to its widespread presence and health risks, but existing vaccines aren’t 100% effective, leaving some individuals unprotected.
  • Using mRNA-sequencing, the study assessed immune responses after the Engerix-B vaccine, finding differences in gene expression before vaccination that correlated with antibody responses after two doses.
  • Non-responders showed an already activated immune state before vaccination and a delayed immune response afterward, suggesting that pre-existing immune conditions can affect the efficacy of hepatitis B vaccination.
View Article and Find Full Text PDF

Pathogens of past and current infections have been identified directly by means of PCR or indirectly by measuring a specific immune response (e.g., antibody titration).

View Article and Find Full Text PDF

Around 30% of individuals will develop herpes zoster (HZ), caused by the varicella zoster virus (VZV), during their life. While several risk factors for HZ, such as immunosuppressive therapy, are well known, the genetic and molecular components that determine the risk of otherwise healthy individuals to develop HZ are still poorly understood. We created a computational model for the Human Leukocyte Antigen (HLA-A, -B, and -C) presentation capacity of peptides derived from the VZV Immediate Early 62 (IE62) protein.

View Article and Find Full Text PDF

Current T cell epitope prediction tools are a valuable resource in designing targeted immunogenicity experiments. They typically focus on, and are able to, accurately predict peptide binding and presentation by major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells. However, recognition of the peptide-MHC complex by a T cell receptor (TCR) is often not included in these tools.

View Article and Find Full Text PDF