The review focuses on speciation and migration of anthropogenic ruthenium (Ru) originated from nuclear industry releases and presents updated information regarding Ru in the environment. It provides analysis of the main pathways of Ru species distribution in the aqueous and terrestrial environment, starting from its natural occurrence, generation and release from anthropogenic sources, predominant speciation, and ending with bioaccumulation, which can be directly or indirectly related to human health. Literature sources belonging to the post-Chernobyl time frame were preferentially considered, in which Ru-103 and Ru-106 are the major fission isotopes studied due to their traceability in the environment and their relatively long half-lives.
View Article and Find Full Text PDFUltraviolet (UV) photolysis of nitrite ions (NO2-) in aqueous solutions produces a suite of radicals, viz., NO·, O-, ·OH, and ·NO2. The O- and NO· radicals are initially formed from the dissociation of photoexcited NO2-.
View Article and Find Full Text PDFThe aqueous hydration structure of the Bi ion is probed using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) simulations of ion-water clusters and condensed-phase solutions. Anomalous features in the EXAFS spectra are found to be associated with a highly asymmetric first-solvent water shell. The aqueous chemistry and structure of the Bi ion are dramatically controlled by the water stabilization of a lone-pair electronic state involving the mixed 6s and 6p orbitals.
View Article and Find Full Text PDF