Background & Aims: Assessment of computed tomography (CT)/magnetic resonance imaging Liver Imaging Reporting and Data System (LI-RADS) v2018 major features leads to substantial inter-reader variability and potential decrease in hepatocellular carcinoma diagnostic accuracy. We assessed the performance and added-value of a machine learning (ML)-based algorithm in assessing CT LI-RADS major features and categorisation of liver observations compared with qualitative assessment performed by a panel of radiologists.
Methods: High-risk patients as per LI-RADS v2018 with pathologically proven liver lesions who underwent multiphase contrast-enhanced CT at diagnosis between January 2015 and March 2019 in seven centres in five countries were retrospectively included and randomly divided into a training set (n = 84 lesions) and a test set (n = 345 lesions).