Metastatic lymph node 51 (MLN51, also known as CASC3) is a core component of the exon junction complex (EJC), which is loaded onto spliced mRNAs and plays an essential role in determining their fate. Unlike the three other EJC core components [eIF4AIII, Magoh and Y14 (also known as RBM8A)], MLN51 is mainly located in the cytoplasm, where it plays a key role in the assembly of stress granules. In this study, we further investigated the cytoplasmic role of MLN51.
View Article and Find Full Text PDFDuring protein synthesis, many translating ribosomes are bound together with an mRNA molecule to form polysomes (or polyribosomes). While the spatial organization of bacterial polysomes has been well studied in vitro, little is known about how they cluster when cellular conditions are highly constrained. To better understand this, we used electron tomography, template matching, and three-dimensional modeling to analyze the supramolecular network of ribosomes after induction of translational pauses.
View Article and Find Full Text PDFA finely tuned balance of translation, storage and decay of mRNAs (mRNAs) is important for the regulation of gene expression. In eukaryotic cells, this takes place in dynamic cytoplasmic RNA-protein granules termed Processing bodies (P-bodies). In this study, by using immunoelectron tomography, 3D modeling and template matching, we analyze the size and the organization of the polysomes in the vicinity of human P-bodies.
View Article and Find Full Text PDFProcessing bodies (P-bodies) are cytoplasmic non-membranous domains involved in the regulation of eukaryotic gene expression. Since their discovery, several studies using fluorescence-based strategies have uncovered their pivotal role in mRNA metabolism, particularly during translation repression and/or mRNA degradation. Yet, P-bodies still remain a "black box" in which numerous proteins accumulate next to RNAs to regulate their fate by unknown mechanisms.
View Article and Find Full Text PDFIntracellular mRNA transport and local translation play a key role in neuronal physiology. Translationally repressed mRNAs are transported as a part of ribonucleoprotein (RNP) particles to distant dendritic sites, but the properties of different RNP particles and mechanisms of their repression and transport remain largely unknown. Here, we describe a new class of RNP-particles, the dendritic P-body-like structures (dlPbodies), which are present in the soma and dendrites of mammalian neurons and have both similarities and differences to P-bodies of non-neuronal cells.
View Article and Find Full Text PDFIn mammals, repression of translation during stress is associated with the assembly of stress granules in the cytoplasm, which contain a fraction of arrested mRNA and have been proposed to play a role in their storage. Because physical contacts are seen with GW bodies, which contain the mRNA degradation machinery, stress granules could also target arrested mRNA to degradation. Here we show that contacts between stress granules and GW bodies appear during stress-granule assembly and not after a movement of the two preassembled structures.
View Article and Find Full Text PDFIn mammals, nonsense-mediated mRNA decay (NMD) is a quality-control mechanism that degrades mRNA harboring a premature termination codon to prevent the synthesis of truncated proteins. To gain insight into the NMD mechanism, we identified NMD inhibitor 1 (NMDI 1) as a small molecule inhibitor of the NMD pathway. We characterized the mode of action of this compound and demonstrated that it acts upstream of hUPF1.
View Article and Find Full Text PDFMetastatic lymph node 51 [MLN51 (also known as CASC3)] is a component of the exon junction complex (EJC), which is assembled on spliced mRNAs and plays important roles in post-splicing events. The four proteins of the EJC core, MLN51, MAGOH, Y14 and EIF4AIII shuttle between the cytoplasm and the nucleus. However, unlike the last three, MLN51 is mainly detected in the cytoplasm, suggesting that it plays an additional function in this compartment.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are approximately 21-nucleotide-long RNA molecules regulating gene expression in multicellular eukaryotes. In metazoa, miRNAs act by imperfectly base-pairing with the 3' untranslated region of target messenger RNAs (mRNAs) and repressing protein accumulation by an unknown mechanism. We demonstrate that endogenous let-7 microribonucleoproteins (miRNPs) or the tethering of Argonaute (Ago) proteins to reporter mRNAs in human cells inhibit translation initiation.
View Article and Find Full Text PDFUnderstanding gene expression control requires defining the molecular and cellular basis of mRNA turnover. We have previously shown that the human decapping factors hDcp2 and hDcp1a are concentrated in specific cytoplasmic structures. Here, we show that hCcr4, hDcp1b, hLsm, and rck/p54 proteins related to 5'-3' mRNA decay also localize to these structures, whereas DcpS, which is involved in cap nucleotide catabolism, is nuclear.
View Article and Find Full Text PDFA novel cytoplasmic compartment referred to as GW bodies (GWBs) was initially identified using antibodies specific to a 182-kD protein termed GW182. GW182 was characterized by multiple glycine(G)-tryptophan(W) repeats and an RNA recognition motif (RRM) that bound a subset of HeLa cell messenger RNAs (mRNAs). The function of GWBs was not known; however, more recent evidence suggested similarities between GWBs and cytoplasmic structures that contain hLSm proteins and hDcp1, the human homolog to a yeast decapping enzyme subunit.
View Article and Find Full Text PDFWe have cloned cDNAs for the human homologues of the yeast Dcp1 and Dcp2 factors involved in the major (5'-3') and NMD mRNA decay pathways. While yeast Dcp1 has been reported to be the decapping enzyme, we show that recombinant human Dcp2 (hDcp2) is enzymatically active. Dcp2 activity appears evolutionarily conserved.
View Article and Find Full Text PDF