Bacteria grow in constantly changing environments that can suddenly become completely depleted of essential nutrients. The stringent response, a rewiring of the cellular metabolism mediated by the alarmone (p)ppGpp, plays a crucial role in adjusting bacterial growth to the severity of the nutritional stress. The ability of (p)ppGpp to trigger a slowdown of cell growth or induce bacterial dormancy has been widely investigated.
View Article and Find Full Text PDFGuanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp) play a central role in the adaptation of bacterial and plant cells to nutritional and environmental stresses and in bacterial resistance to antibiotics. These compounds have historically been detected and quantified by two-dimensional thin-layer chromatography of P-radiolabeled nucleotides. We report a new method to quantify ppGpp and pppGpp in complex biochemical matrix using ion chromatography coupled to high-resolution mass spectrometry.
View Article and Find Full Text PDFBackground: The increasing regulatory requirements to which biological agents are subjected will have a great impact in the field of industrial protein expression and production. There is an expectation that in a near future, there may be "zero tolerance" towards antibiotic-based selection and production systems. Besides the antibiotic itself, the antibiotic resistance gene is an important consideration.
View Article and Find Full Text PDF