Objectives: While several cross-sectional studies have investigated the acute effects of shoe drop on running biomechanics, the long-term consequences are currently unknown. This study aimed to investigate if the drop of standard cushioned shoes induces specific adaptations in running technique over a six-month period in leisure-time runners.
Design: Double-blinded randomised controlled trial.
Background: Modern running shoes are available in a wide range of heel-to-toe drops (ie, the height difference between the forward and rear parts of the inside of the shoe). While shoe drop has been shown to influence strike pattern, its effect on injury risk has never been investigated. Therefore, the reasons for such variety in this parameter are unclear.
View Article and Find Full Text PDFBackground/aim: This randomised controlled trial investigated if the usage of running shoes with a motion control system modifies injury risk in regular leisure-time runners compared to standard shoes, and if this influence depends on foot morphology.
Methods: Recreational runners (n=372) were given either the motion control or the standard version of a regular running shoe model and were followed up for 6 months regarding running activity and injury. Foot morphology was analysed using the Foot Posture Index method.
Studies involving minimalist shoes have dramatically increased this past 10 years. While a deeper knowledge of the related modifications has ensued regarding the kinematics, electromyographic, and dynamic patterns, little is known regarding the modifications at the muscle forces and muscle fiber levels. The aim of the present study was to assess at a muscular level the modifications brought up when running barefoot, using 0mm midsole height running shoe, or using classical midsole height running shoes.
View Article and Find Full Text PDFPurpose: Minimalist running shoes are designed to induce a foot strike made more with the forepart of the foot. The main changes made on minimalist shoe consist in decreasing the height difference between fore and rear parts of the sole (drop). Barefoot and shod running have been widely compared on overground or treadmill these last years, but the key characteristic effects of minimalist shoes have been yet little studied.
View Article and Find Full Text PDFMany studies have highlighted differences in foot strike pattern comparing habitually shod runners who ran barefoot and with running shoes. Barefoot running results in a flatter foot landing and in a decreased vertical ground reaction force compared to shod running. The aim of this study was to investigate one possible parameter influencing running pattern: the midsole thickness.
View Article and Find Full Text PDFThis study investigates the effect of running shoes' aging on mechanical and biomechanical parameters as a function of midsole materials (viscous, intermediate, elastic) and ground inclination. To this aim, heel area of the shoe (under calcaneal tuberosity) was first mechanically aged at realistic frequency and impact magnitudes based on a 660 km training plan. Stiffness (ST) and viscosity were then measured on both aged and matching new shoes, and repercussions on biomechanical variables (joint kinematics, muscular pre-activation, vertical ground reaction force and tibial acceleration) were assessed during a leg-extended stepping-down task designed to mimic the characteristics of running impacts.
View Article and Find Full Text PDF