Explaining the decisions made by a radiomic model is of significant interest, as it can provide valuable insights into the information learned by complex models and foster trust in well-performing ones, thereby facilitating their clinical adoption. Promising radiomic approaches that aggregate information from multiple regions within an image currently lack suitable explanation tools that could identify the regions that most significantly influence their decisions. Here we present a model- and modality-agnostic tool (RadShap, https://github.
View Article and Find Full Text PDFThe normalized distances from the hot spot of radiotracer uptake (SUV) to the tumor centroid (NHOC) and to the tumor perimeter (NHOP) have recently been suggested as novel PET features reflecting tumor aggressiveness. These biomarkers characterizing the shift of SUV toward the lesion edge during tumor progression have been shown to be prognostic factors in breast and non-small cell lung cancer (NSCLC) patients. We assessed the impact of imaging parameters on NHOC and NHOP, their complementarity to conventional PET features, and their prognostic value for advanced-NSCLC patients.
View Article and Find Full Text PDFSummary: We developed BIODICA, an integrated computational environment for application of independent component analysis (ICA) to bulk and single-cell molecular profiles, interpretation of the results in terms of biological functions and correlation with metadata. The computational core is the novel Python package stabilized-ica which provides interface to several ICA algorithms, a stabilization procedure, meta-analysis and component interpretation tools. BIODICA is equipped with a user-friendly graphical user interface, allowing non-experienced users to perform the ICA-based omics data analysis.
View Article and Find Full Text PDF