Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing.
View Article and Find Full Text PDFNovel bacterial type II topoisomerase inhibitors (NBTIs) stabilize single-strand DNA cleavage breaks by DNA gyrase but their exact mechanism of action has remained hypothetical until now. We have designed a small library of NBTIs with an improved DNA gyrase-binding moiety resulting in low nanomolar inhibition and very potent antibacterial activity. They stabilize single-stranded cleavage complexes and, importantly, we have obtained the crystal structure where an NBTI binds gyrase-DNA in a single conformation lacking apparent static disorder.
View Article and Find Full Text PDFDecatenation is a crucial reaction of DNA topoisomerases in DNA replication and is frequently used in drug screening. Usually this reaction is monitored using kinetoplast DNA as a substrate, although this assay has several limitations. Here we have engineered a substrate for Tn resolvase that generates a singly-linked catenane that can readily be purified from the DNA substrate after restriction enzyme digestion and centrifugation.
View Article and Find Full Text PDFThe emergence of the SARS-CoV-2 virus and the exponential growth of COVID-19 cases have created a major crisis for public health systems. The critical identification of contagious asymptomatic carriers requires the isolation of viral nucleic acids, reverse transcription, and amplification by PCR. However, the shortage of specific proprietary reagents or the lack of automated platforms have seriously hampered diagnostic throughput in many countries.
View Article and Find Full Text PDFObjective: Agarose gel electrophoresis has been the mainstay technique for the analysis of DNA samples of moderate size. In addition to separating linear DNA molecules, it can also resolve different topological forms of plasmid DNAs, an application useful for the analysis of the reactions of DNA topoisomerases. However, gel electrophoresis is an intrinsically low-throughput technique and suffers from other potential disadvantages.
View Article and Find Full Text PDFWe have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of DNA topoisomerases. The assay utilizes intermolecular triplex formation between an immobilized triplex-forming oligo (TFO) and a triplex-forming region inserted into the plasmid substrate (pNO1), and capitalizes on the observation that supercoiled DNA forms triplexes more readily than relaxed DNA. Thus, supercoiled DNA is preferentially retained by the TFO under triplex-forming conditions while relaxed DNA can be washed away.
View Article and Find Full Text PDFWe have developed a rapid, high-throughput assay for measuring the catalytic activity (DNA supercoiling or relaxation) of topoisomerase enzymes that is also capable of monitoring the activity of other enzymes that alter the topology of DNA. The assay utilises intermolecular triplex formation to resolve supercoiled and relaxed forms of DNA, the principle being the greater efficiency of a negatively supercoiled plasmid to form an intermolecular triplex with an immobilised oligonucleotide than the relaxed form. The assay provides a number of advantages over the standard gel-based methods, including greater speed of analysis, reduced sample handling, better quantitation and improved reliability and accuracy of output data.
View Article and Find Full Text PDFA novel species of Acidimicrobium appeared to be the predominant ferrous iron oxidizer in a mixed culture that effected the continuous, efficient extraction of nickel from a mineral concentrate at 49 degrees C, but it was not isolated in pure culture. It outcompeted Acidimicrobium ferrooxidans, which was expected to have a major role in iron oxidation in reactors gassed with air, and was outnumbered at 49 degrees C only by the sulfur-oxidizing Acidithiobacillus caldus. Sulfobacillus species were expected to compete with Acidimicrobium species when culture aeration was enriched with carbon dioxide, but they were a minor component of the populations with and without this enrichment.
View Article and Find Full Text PDFWe have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2005
Crystals of the RADIALIS protein from Antirrhinum majus were grown by vapour diffusion after limited proteolysis. Mass spectrometry indicated that an 8 kDa fragment had been crystallized corresponding to the predicted MYB DNA-binding domain. X-ray data collected at room temperature were consistent with tetragonal symmetry, whereas data collected at 100 K using crystals cryoprotected by supplementing the mother liquor with ethylene glycol conformed to orthorhombic symmetry.
View Article and Find Full Text PDFDELLA proteins restrain the cell proliferation and enlargement that characterizes the growth of plant organs. Gibberellin stimulates growth via 26S proteasome-dependent destruction of DELLAs, thus relieving DELLA-mediated growth restraint. Here, we show that the Arabidopsis thaliana sleepy1gar2-1 (sly1gar2-1) mutant allele encodes a mutant subunit (sly1gar2-1) of an SCF(SLY1) E3 ubiquitin ligase complex.
View Article and Find Full Text PDFThe Edinburgh MouseAtlas Project (EMAP) is a time-series of mouse-embryo volumetric models. The models provide a context-free spatial framework onto which structural interpretations and experimental data can be mapped. This enables collation, comparison, and query of complex spatial patterns with respect to each other and with respect to known or hypothesized structure.
View Article and Find Full Text PDFSoluble methane monooxygenase (sMMO) of Methylosinus trichosporium OB3b is a three-component oxygenase that catalyses the O(2)- and NAD(P)H-dependent oxygenation of methane and numerous other substrates. Despite substantial interest in the use of genetic techniques to study the mechanism of sMMO and manipulate its substrate specificity, directed mutagenesis of active-site residues was previously impossible because no suitable heterologous expression system had been found for expression in a highly active form of the hydroxylase component, which is an (alphabetagamma)(2) complex containing the binuclear iron active site. A homologous expression system that enabled the expression of recombinant wild-type sMMO in a derivative of M.
View Article and Find Full Text PDFThe extracytoplasmic function (ECF) sigma factor sigma(R) is a global regulator of redox homeostasis in the antibiotic-producing bacterium Streptomyces coelicolor, with a similar role in other actinomycetes such as Mycobacterium tuberculosis. Normally maintained in an inactive state by its bound anti-sigma factor RsrA, sigma(R) dissociates in response to intracellular disulphide-stress to direct core RNA polymerase to transcribe genes, such as trxBA and trxC that encode the enzymes of the thioredoxin disulphide reductase pathway, that re-establish redox homeostasis. Little is known about where RsrA binds on sigma(R) or how it suppresses sigma(R)-dependent transcriptional activity.
View Article and Find Full Text PDF