Acquiring multiple high magnification, high resolution images with scanning electron microscopes (SEMs) for quantitative analysis is a time consuming and repetitive task for microscopists. We propose a workflow to automate SEM image acquisition and demonstrate its use in the context of nanoparticle (NP) analysis. Acquiring multiple images of this type of specimen is necessary to obtain a complete and proper characterization of the NP population and obtain statistically representative results.
View Article and Find Full Text PDFElectron beam damage in electron microscopes is becoming more and more problematic in material research with the increasing demand of characterization of new beam sensitive material such as Li based compounds used in lithium-ion batteries. To avoid radiolysis damage, it has become common practice to use Cryo-EM, however, knock-on damage can still occur in conventional TEM/STEM with a high-accelerating voltage (200-300 keV). In this work, electron energy loss spectroscopy with an accelerating voltage of 30,20 and 10 keV was explored with h-BN, TiB and TiN compounds.
View Article and Find Full Text PDFTo fulfill power and energy demands, lithium-ion battery (LIB) is being considered as a promising energy storage device. For the development of LIBs, high-resolution electron microscopy characterization of battery materials is crucial. During this characterization, the interaction of beam-electrons with Li-containing materials causes damage through several processes, especially knock-on damage.
View Article and Find Full Text PDFThis study introduces a universal equation to calculate the geometrical correction factor (G) as the fourth factor in the conventional ZAF method for quantifying spherical particles (specifically, NIST-K411 glass microspheres mounted on bulk carbon substrate). Note that the fluorescence correction factor (F) is not considered in this study. Our findings demonstrate that the G factor, as a function of the particle diameter (D) and the range of emitted X-rays in a bulk sample (Xe), provides the best model.
View Article and Find Full Text PDFUltramicroscopy
December 2022
A novel approach, termed line-rotated remapping (LRR), for high resolution electron backscatter diffraction is proposed to remap patterns with large rotation. In LRR, the displacements during the first-pass cross-correlation is modified to a function of the corresponding Kikuchi lines and the points on the reference pattern. Then, the finite rotation matrix to remap the test pattern to a similar orientation of the reference pattern is determined using the parameters of the Kikuchi lines.
View Article and Find Full Text PDFIn the past few decades, nanostructured carbons (NCs) have been investigated for their interesting properties, which are attractive for a wide range of applications in electronic devices, energy systems, sensors, and support materials. One approach to improving the properties of NCs is to dope them with various heteroatoms. This work describes the synthesis and study of sulfur-added carbon nanohorns (S-CNH).
View Article and Find Full Text PDFGenerating quantitative phase maps is unvaluable to access the phase distribution in a material. X-ray hyperspectral mapping using an energy dispersive spectrometer (EDS) attached to a scanning electron microscope (SEM) is the most practical way to collect these data, mainly due to its relatively ease of operation and availability around the world. In this work, we demonstrate an innovative technique to produce high-quality phase maps based on the correlation between each hyperspectral image pixel spectrum and a set of standards spectra.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
Photocatalysts able to trigger the production of singlet oxygen species are the topic of intense research efforts in organic synthesis. Yet, challenges still exist in improving their activity and optimizing their use. Herein, we exploited the benefits of plasmonic nanoparticles to boost the activity of such photocatalysts via an antenna effect in the visible range.
View Article and Find Full Text PDFThe microstructures of quenched and tempered steels have been traditionally explored by transmission electron microscopy (TEM) rather than scanning electron microscopy (SEM) since TEM offers the high resolution necessary to image the structural details that control the mechanical properties. However, scanning electron microscopes, apart from providing larger area coverage, are commonly available and cheaper to purchase and operate compared to TEM and have evolved considerably in terms of resolution. This work presents detailed comparison of the microstructure characterization of quenched and tempered high-strength steels with TEM and SEM electron channeling contrast techniques.
View Article and Find Full Text PDFElectron tomography has been widely applied to three-dimensional (3D) morphology characterization and chemical analysis at the nanoscale. A HAADF-EDS bimodal tomographic (HEBT) reconstruction technique has been developed to extract high resolution element-specific information. However, the reconstructed elemental maps cannot be directly converted to quantitative compositional information.
View Article and Find Full Text PDFA method of calculating the magnitude of the core hole screening of lithium materials is implemented for the simulation of Energy Loss Near Edge Structure (ELNES). ELNES is calculated for a range of lithium materials resulting in improved agreement between calculation and experiment. The technique uses linear response theory to relate the electron density to the core hole shielding contribution from the valence electrons in a crystal.
View Article and Find Full Text PDFIn this study, the effect of Scanning Electron Microscopy (SEM) parameters such as magnification (), accelerating voltage (), and working distance (WD) on the 3D digital reconstruction technique, as the first step of the quantitative characterization of fracture surfaces with SEM, was investigated. The 2D images were taken via a 4-Quadrant Backscattered Electron (4Q-BSE) detector. In this study, spherical particles of Ti-6Al-4V (15-45 m) deposited on the silicon substrate were used.
View Article and Find Full Text PDFCurrent quantitative X-ray microanalysis methods are only available for homogeneous materials. This paper presents a newly developed inverse modeling algorithm to determine both the structure and composition of two-dimensional (2D) heterogeneous materials from a series of X-ray intensity measurements under different beam energies and beam positions. It utilizes an iterative process of forward modeling to determine the optimal specimen to minimize the relative differences between the simulated and experimental characteristic X-ray intensities.
View Article and Find Full Text PDFA serious limitation in the use of energy dispersive spectrometers (EDS) for materials characterization arises from the fact that these x-ray detectors provide a poor energy resolution compared to other x-ray techniques. This is mainly due to the broadening function generated by the electronics of the detector. However, new windowless detectors are now capable of resolving low energy peaks like Li Kα with modified electronics and show a system peak full width at half maximum (FWHM) of around 30 eV.
View Article and Find Full Text PDFA commercial electron energy-loss spectrometer (EELS) attached to a high-resolution cold-field emission scanning electron microscope in transmission mode (STEM) is evaluated and its potential for characterizing materials science thin specimens at low accelerating voltage is reviewed. Despite the increased beam radiation damage at SEM voltages on sensitive compounds, we describe some potential applications which benefit from lowering the primary electrons voltage on less-sensitive specimens. We report bandgap measurements on several dielectrics which were facilitated by the lack of Cherenkov radiation losses at 30 kV.
View Article and Find Full Text PDFHollow mesoporous silica capsules (HMSC) are potential drug transport vehicles due to their biocompatibility, high loading capacity and sufficient stability in biological milieu. Herein, we report the synthesis of ellipsoid-shaped HMSC (aspect ratio ∼2) performed using hematite particles as solid templates that were coated with a conformal silica shell through cross-condensation reactions. For obtaining hollow silica capsules, the iron oxide core was removed by acidic leaching.
View Article and Find Full Text PDFA number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope.
View Article and Find Full Text PDFCharacterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope.
View Article and Find Full Text PDFElectron channelling is known to affect the x-ray production when an accelerated electron beam is applied to a crystalline material and is highly dependent on the local crystal orientation. This effect, unless very long counting time are used, is barely noticeable on x-ray energy spectra recorded with conventional silicon drift detectors (SDD) located at a small elevation angle. However, the very high count rates provided by the new commercially available annular SDDs permit now to observe this effect routinely and may, in some circumstances, hide the true elemental x-ray variations due to the local true specimen composition.
View Article and Find Full Text PDFCharacterization of the topmost surface of biomaterials is crucial to understanding their properties and interactions with the local environment. In this study, the oxide layer microstructure of plasma-modified 316L stainless steel (SS316L) samples was analyzed by a combination of electron backscatter diffraction and electron channeling contrast imaging using low-energy incident electrons. Both techniques allowed clear identification of a nano-thick amorphous oxide layer, on top of the polycrystalline substrate, for the plasma-modified samples.
View Article and Find Full Text PDFCold spray is a thermo-mechanical process where the velocity of the sprayed particles affects the deformation, bonding, and mechanical properties of the deposited material, in the form of splats or coatings. At high strain rates, the impact stresses are converted into heat, a phenomenon known as adiabatic shear, which leads to grain re-crystallization. Grain re-crystallization and growth are shown to have a direct impact on the mechanical properties of the cold-sprayed material.
View Article and Find Full Text PDFDark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope.
View Article and Find Full Text PDFDue to its very low hardness and atomic number, pure lithium cannot be prepared by conventional methods prior to scanning electron microscopy analysis. Here, we report on the characterization of pure lithium metallic sheets used as base electrodes in the lithium-ion battery technology using electron backscatter diffraction (EBSD) and X-ray microanalysis using energy dispersive spectroscopy (EDS) after the sheet surface was polished by broad argon ion milling (IM). No grinding and polishing were necessary to achieve the sufficiently damage free necessary for surface analysis.
View Article and Find Full Text PDFThe electron channeling contrast imaging technique was used to investigate the microstructure of copper coatings fabricated by cold gas dynamic spray. The high velocity impact characteristics for cold spray led to the formation of many substructures, such as high density dislocation walls, dislocation cells, deformation twins, and ultrafine equiaxed subgrains/grains. A schematic model is proposed to explain structure refinement of Cu during cold spray, where an emphasis is placed on the role of dislocation configurations and twinning.
View Article and Find Full Text PDFThe magnetic properties of non-oriented electrical steels (NOES) are an important factor in determining the efficiency of electric vehicle drivetrains. Due to the highly variable texture of NOES, the relationships between crystal orientation, the magnetic domain structure, and the final magnetic properties are complicated and not fully understood. In this study, a NOES sample was characterized with a method capable of imaging surface magnetic domains using scanning electron microscopy (SEM) with an electron backscatter diffraction (EBSD) system equipped with a forescatter detector.
View Article and Find Full Text PDF