Publications by authors named "Nicolas Bravo-Vasquez"

Modeling traumatic brain injury (TBI) has been a challenge. Rodent and cellular models have provided relevant contributions despite their limitations. Here, we present a protocol for a TBI model based on the controlled cortical impact (CCI) performed on human cerebral organoids (COs), self-assembled 3D cultures that recapitulate features of the human brain.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a head injury that disrupts the normal brain structure and function. TBI has been extensively studied using various in vitro and in vivo models. Most of the studies have been done with rodent models, which may respond differently to TBI than human nerve cells.

View Article and Find Full Text PDF

Since their discovery in the United States in 1963, outbreaks of infection with equine influenza virus (H3N8) have been associated with serious respiratory disease in horses worldwide. Genomic analysis suggests that equine H3 viruses are of an avian lineage, likely originating in wild birds. Equine-like internal genes have been identified in avian influenza viruses isolated from wild birds in the Southern Cone of South America.

View Article and Find Full Text PDF

Backyard production systems (BPS) are a common form of poultry and swine production worldwide. The limited implementation of biosecurity standards in these operations makes BPS a potential source for the emergence of pathogens that have an impact on both animal and public health. Information regarding circulation of influenza A virus (IAV) in poultry and swine raised in BPS is scarce; particularly in South American countries.

View Article and Find Full Text PDF
Article Synopsis
  • In late 2016, a low pathogenic H7N6 avian influenza virus outbreak was reported in domestic turkeys in Central Chile.
  • Researchers analyzed the genetic and antigenic properties of the virus and its transmission to chickens, discovering it was a reassorted strain from wild bird viruses.
  • The study revealed that the virus adapted to poultry and developed resistance to antiviral medications, emphasizing the importance of ongoing surveillance and better biosecurity measures on poultry farms.
View Article and Find Full Text PDF

Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus.

View Article and Find Full Text PDF