MicroRNAs (miRNAs) are essential regulators of gene expression, defined by their unique biogenesis, which requires the precise excision of the small RNA from an imperfect fold-back precursor. Unlike their animal counterparts, plant miRNA precursors exhibit variations in sizes and shapes. Plant MIRNAs can undergo processing in a base-to-loop or loop-to-base direction, with DICER-LIKE1 (DCL1) releasing the miRNA after two cuts (two-step MIRNAs) or more (sequential MIRNAs).
View Article and Find Full Text PDFPlant ARGONAUTE (AGO) proteins play pivotal roles regulating gene expression through small RNA (sRNA) -guided mechanisms. Among the 10 AGO proteins in Arabidopsis thaliana, AGO1 stands out as the main effector of post-transcriptional gene silencing. Intriguingly, a specific region of AGO1, its N-terminal extension (NTE), has garnered attention in recent studies due to its involvement in diverse regulatory functions, including subcellular localization, sRNA loading and interactions with regulatory factors.
View Article and Find Full Text PDFPlant noncoding RNA transcripts have gained increasing attention in recent years due to growing evidence that they can regulate developmental plasticity. In this review article, we comprehensively analyze the relationship between noncoding RNA transcripts in plants and their response to environmental cues. We first provide an overview of the various noncoding transcript types, including long and small RNAs, and how the environment modulates their performance.
View Article and Find Full Text PDFGene targeting can be used to make modifications at a specific region in a plant's genome and create high-precision tools for plant biotechnology and breeding. However, its low efficiency is a major barrier to its use in plants. The discovery of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas-based site-specific nucleases capable of inducing double-strand breaks in desired loci resulted in the development of novel approaches for plant gene targeting.
View Article and Find Full Text PDFARGONAUTE (AGO) proteins are the final effectors of small RNA-mediated transcriptional and post-transcriptional silencing pathways. Plant AGO proteins are essential for preserving genome integrity, regulating developmental processes, and in stress responses and pathogen defense. Since the discovery of the first eukaryotic AGO in Arabidopsis, our understanding of these proteins has grown exponentially throughout all the eukaryotes.
View Article and Find Full Text PDFThe nature of plant tissues has continuously hampered understanding of the spatio-temporal and subcellular distribution of RNA-guided processes. Here, we describe a universal protocol based on to investigate subcellular RNA distribution from virtually any plant species using flow cytometry sorting. This protocol includes all necessary control steps to assess the quality of the nuclear RNA purification.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA.
View Article and Find Full Text PDFThe circadian clock modulates immune responses in plants and animals; however, it is unclear how host-pathogen interactions affect the clock. Here we analyzed clock function in Arabidopsis thaliana mutants with defective immune responses and found that enhanced disease susceptibility 4 (eds4) displays alterations in several circadian rhythms. Mapping by sequencing revealed that EDS4 encodes the ortholog of NUCLEOPORIN 205, a core component of the inner ring of the nuclear pore complex (NPC).
View Article and Find Full Text PDFLoaded into ARGONAUTE(AGO) proteins, eukaryotic micro(mi)RNAs regulate gene expression via cleavage, translational repression, and/or accelerated decay of sequence-complementary target transcripts. Despite their importance in development, cell identity maintenance and stress responses, how individual miRNAs contribute to spatial gene regulation within the complex cell mosaics formed in tissues/organs has remained inaccessible in any organism to date. We have developed a non-invasive methodology to examine, at single-cell-type resolution, the AGO-loading and activity patterns of entire miRNA cohorts in intact organs, applied here to the Arabidopsis root tip.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2018
Today, silicon is the most used material in photovoltaics, with the maximum conversion efficiency getting very close to the Shockley-Queisser limit for single-junction devices. Integrating silicon with higher band-gap ternary III-V absorbers is the path to increase the conversion efficiency. Here, we report on the first monolithic integration of Ga InP vertical nanowires, and the associated p-n junctions, on silicon by the Au-free template-assisted selective epitaxy (TASE) method.
View Article and Find Full Text PDFIn eukaryotes, the RNase-III Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant pre-miR168 orthologs, which enables flexible internal base-pairing underlying at least three metastable structural configurations.
View Article and Find Full Text PDFUnlike in metazoans, plant microRNAs (miRNAs) undergo stepwise nuclear maturation before engaging cytosolic, sequence-complementary transcripts in association with the silencing effector protein ARGONAUTE1 (AGO1). Since their discovery, how and under which form plant miRNAs translocate to the cytosol has remained unclear, as has their sub-cellular AGO1 loading site(s). Here, we show that the N termini of all plant AGO1s contain a nuclear-localization (NLS) and nuclear-export signal (NES) that, in Arabidopsis thaliana (At), enables AtAGO1 nucleo-cytosolic shuttling in a Leptomycin-B-inhibited manner, diagnostic of CRM1(EXPO1)/NES-dependent nuclear export.
View Article and Find Full Text PDFGaSb nanostructures integrated on Si substrates are of high interest for p-type transistors and mid-IR photodetectors. Here, we investigate the metalorganic chemical vapor deposition and properties of GaSb nanostructures monolithically integrated onto silicon-on-insulator wafers using template-assisted selective epitaxy. A high degree of morphological control allows for GaSb nanostructures with critical dimensions down to 20 nm.
View Article and Find Full Text PDFPlant RNA silencing operates via RNA-directed DNA-methylation (RdDM) to repress transcription or by targeting mRNAs via posttranscriptional gene silencing (PTGS). These pathways rely on distinct Dicer-like (DCL) proteins that process double-stranded RNA (dsRNA) into small-interfering RNAs (siRNAs). Here, we explored the expression and subcellular localization of Arabidopsis thaliana DCL4.
View Article and Find Full Text PDFMicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small RNAs that derive from endogenous precursors harboring foldback structures. Plant miRNA precursors are quite variable in their size and shape. Still, the miRNA processing machinery, consisting of DICER-LIKE1 (DCL1) and accessory proteins recognize structural features on the precursors to cleave them at specific places releasing the mature miRNAs.
View Article and Find Full Text PDFAnnu Rev Plant Biol
July 2014
In eukaryotic RNA silencing, RNase-III classes of enzymes in the Dicer family process double-stranded RNA of cellular or exogenous origin into small-RNA (sRNA) molecules. sRNAs are then loaded into effector proteins known as ARGONAUTEs (AGOs), which, as part of RNA-induced silencing complexes, target complementary RNA or DNA for silencing. Plants have evolved a large variety of pathways over the Dicer-AGO consortium, which most likely underpins part of their phenotypic plasticity.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small RNAs that derive from endogenous precursors harboring foldback structures. Plant miRNA precursors are quite variable in their size and shape. Still, the miRNA processing machinery, consisting of DICER-LIKE1 (DCL1) and accessory proteins recognize structural features on the precursors to cleave them at specific places releasing the mature miRNAs.
View Article and Find Full Text PDFMicroRNAs (miRNAs) derive from longer precursors with fold-back structures. While animal miRNA precursors have homogenous structures, plant precursors comprise a collection of fold-backs with variable size and shape. Here, we design an approach to systematically analyze miRNA processing intermediates and characterize the biogenesis of most of the evolutionarily conserved miRNAs present in Arabidopsis thaliana.
View Article and Find Full Text PDFDicer-like ribonuclease III enzymes are involved in different paths related to RNA silencing in plants. Little is known about the structural aspects of these processes. Here we present a structural characterization of the second double-stranded RNA binding domain (dsRBD) of DCL1, which is presumed to participate in pri-micro-RNA recognition and subcellular localization of this protein.
View Article and Find Full Text PDFMicroRNAs are endogenous small RNAs known to be key regulators of gene expression in animals and plants. They are defined by their specific biogenesis which involves the precise excision from an imperfect fold-back precursor. These precursors contain structural determinants required for their correct processing.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are major regulators of gene expression in multicellular organisms. They recognize their targets by sequence complementarity and guide them to cleavage or translational arrest. It is generally accepted that plant miRNAs have extensive complementarity to their targets and their prediction usually relies on the use of empirical parameters deduced from known miRNA-target interactions.
View Article and Find Full Text PDFHYL1 is a double-stranded RNA binding protein involved in microRNA processing in plants. HYL1 enhances the efficiency and precision of the RNase III protein DCL1 and participates in microRNA strand selection. In this work, we dissect the contributions of the domains of HYL1 to the binding of RNA targets.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are widespread posttranscriptional regulators of gene expression. They are processed from longer primary transcripts that contain foldback structures (reviewed in). In animals, a complex formed by Drosha and DGCR8/Pasha recognizes the transition between the single-stranded RNA sequences and the stem loop to produce the first cleavage step in miRNA biogenesis.
View Article and Find Full Text PDFThe first step in microRNA (miRNA) biogenesis usually involves cleavage at the base of its fold-back precursor. Here, we describe a non-canonical processing mechanism for miRNAs miR319 and miR159 in Arabidopsis thaliana. We found that their biogenesis begins with the cleavage of the loop, instead of the usual cut at the base of the stem-loop structure.
View Article and Find Full Text PDF