Publications by authors named "Nicolas Bambach"

Unlabelled: Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed.

View Article and Find Full Text PDF

Robust information on consumptive water use (evapotranspiration, ET) derived from remote sensing can significantly benefit water decision-making in agriculture, informing irrigation schedules and water management plans over extended regions. To be of optimal utility for operational usage, these remote sensing ET data should be generated at the sub-field spatial resolution and daily-to-weekly timesteps commensurate with the scales of water management activities. However, current methods for field-scale ET retrieval based on thermal infrared (TIR) imaging, a valuable diagnostic of canopy stress and surface moisture status, are limited by the temporal revisit of available medium-resolution (100 m or finer) thermal satellite sensors.

View Article and Find Full Text PDF

Solar-induced fluorescence (SIF) is a promising tool to estimate photosynthesis across scales; however, there has been limited research done at the leaf level to investigate the relationship between SIF and photosynthesis. To help bridge this gap, a LI-COR LI-6800 gas exchange instrument was modified with a visible-near-infrared (VIS-NIR) spectrometer to measure active and passive fluorescence simultaneously. The system was adapted by drilling a hole into the bottom plate of the leaf chamber and inserting a fibre-optic to measure passive steady-state fluorescence ( , , analogous to SIF) from the abaxial surface of a leaf.

View Article and Find Full Text PDF

Knowledge about physiological stress thresholds provides crucial information about plant performance and survival under drought. In this study, we report on the triphasic nature of the relationship between plant water potential (Ψ) at predawn and midday and describe a method that predicts Ψ at stomatal closure and turgor loss exclusively from this water potential curve (WP curve). The method is based on a piecewise linear regression model that was developed to predict the boundaries (termed Θ and Θ) separating the three phases of the curve and corresponding slope values.

View Article and Find Full Text PDF