Exposure to ultrasound combined with intravenous injection of microbubbles is a technique that can be used to temporarily disrupt the blood-brain barrier. Transcranial monitoring of cavitation can be done with one or more passive cavitation detectors (PCDs). However, the positioning of the PCDs relative to the cavitation site and the attenuation of these signals by the skull are two sources of error in the quantification of cavitation activity.
View Article and Find Full Text PDFPurpose: The blood-brain barrier (BBB) limits the efficacy of drug therapies for glioblastoma (GBM). Preclinical data indicate that low-intensity pulsed ultrasound (LIPU) can transiently disrupt the BBB and increase intracerebral drug concentrations.
Patients And Methods: A first-in-man, single-arm, single-center trial (NCT02253212) was initiated to investigate the transient disruption of the BBB in patients with recurrent GBM.
IEEE Trans Ultrason Ferroelectr Freq Control
April 2018
Cavitation is a critical parameter in various therapeutic applications involving ultrasound (US) such as histotrispy, lithothripsy, drug delivery, and cavitation-enhanced hyperthermia. A cavitation exposure outside the region of interest may lead to suboptimal treatment efficacy or in a worse case, to safety issues. Current methods of localizing cavitation are based on imaging approaches, such as beamforming the cavitation signals received passively by a US imager.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2018